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Abstract

This paper analyzes the properties of three capacity games in an oligopolis-

tic market with Cournot players and deterministic demand. In the first game,

capacity and the operation of that capacity is determined simultaneously. This

is the classic open-loop Cournot game. In the second game, capacity is decided

in the first stage and the operation of that capacity is determined in the second

stage. The first-stage decision of each player is contingent on the solution of

the second-stage game. This is a two-stage, closed-loop game. We show that

when the solution exists, it is the same as the solution in the first game. How-

ever, it does not always exist. The third game has three stages with a futures

position taken between the capacity stage and the operations stage and is also a

closed-loop game. As with the second game, the equilibrium is the same as the

open-loop game when it exists. However, the conditions for existence are more

restrictive with forward markets added. When both games have an equilibrium,

the solution values are identical. The results are very different from games with

no capacity stage as studied by Allaz and Vila (1993), where they concluded

that forward markets can ameliorate market power.



1 Introduction

One of the important questions in the theory of oligopolistic markets is the role of

forward markets in mitigating market power. The literature on this subject typically

examines the effect of forward markets on production levels in oligopolistic markets

without explicit capacity decisions. By adding a capacity decision for each player

before the decision on the forward position, we increase the realism of the game

for capital-intensive industries in a commodity business and derive results that are

different from those in the literature.

Understanding the effects of forward markets has taken on new importance given

the problems in the California electricity market. Here the use of forward markets by

the regulated electricity purchasers was restricted to 20% of expected sales and the

problems in that market in 2000 were partially blamed on the lack of active forward

markets that could have locked in lower rates on much of the capacity.

The original work on the potential of forward markets to mitigate market power is

by Allaz (1992) and Allaz and Vila (1993). They wrote two of the early papers on this

and derived the remarkable result that with Cournot players oligopolistic producers

increase production just from the existence of a forward markets. This result has in-

tuitive appeal: the forward position fixes the price for a portion of the production and

reduces the quantity that is subject to lower prices from increased production. This

increases the marginal revenue in the spot market for any production level, thereby

increasing the equilibrium quantity. In fact, they show that as the number of periods

increases, the equilibrium in a duopoly converges to the competitive equilibrium.

Their work has led to a growing literature with articles confirming or negating the

result. None of these articles have addressed the effect of capacity decisions on the

extent to which forward decisions can alter production decisions. In the next section

we survey the literature illustrating both sides of the debate on the effect of forward

markets.
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Next we examine the open-loop Cournot game where capacity and production

decisions are made simultaneously. We then develop closed-loop games without and

with forward markets. In closed-loop games the capacity decision of each player is

made knowing how this decision affects the production decision of the other player,

while taking the capacity decision of the other player as given. Our first closed-loop

game determines capacity in the first stage, followed by the operation of the capac-

ity in the second stage. This is different from the standard open-loop game where

the capacity and production decisions are made simultaneously and each player sees

the other player’s capacity and production decisions fixed. Our main results in this

section are that an equilibrium might not exist, but if it exists, it is the same as the

open-loop equilibrium where the capacity and production decisions are made simul-

taneously.

The last game has a futures stage between the capacity stage and the production

stage. This is a three-stage closed-loop game. Here the capacity decisions are made

knowing their effects on futures decisions, which are made knowing their effects on

the spot game. The forward markets play a complex role. An equilibrium might

not exist, but if it exists, it is the same as the open-loop equilibrium. This is the

main result of this paper: the Allaz-Vila effect vanishes in the model with capacities,

when the equilibrium exists. A further result is that there exist parameters for which

the game without forward markets has an equilibrium but the game with forward

markets does not. The underlying reason for these results is that capacities drastically

change the way the forward market acts on the spot market. In Allaz and Villa model,

increasing the forward position of a player decreases production by the other player.

However, in the game with a capacity stage, both players operate at capacity with

the result that increasing the forward position of a player only decreases the marginal

value of the other player’s capacity, not its production. We show that this property

reproduces the single-stage Cournot solution.

This model is deterministic. Adding uncertainty, or the equivalent load duration

curve can have an important impact as seen in Part 2.
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2 Literature review

Some of the literature on the effects of forward markets on spot markets is generic to

all markets, while the rest of the literature can be grouped along two different dimen-

sions. The first dimension is Bertrand versus Cournot models with supply-function

equilibria falling in between. The second is electricity markets versus traditional

commodity markets.

2.1 Cournot electricity markets

Following Green and Newbery (1992), Newbery (1998) models the spot market as a

supply function equilibrium. He introduces cost and demand assumptions than allow

him to derive explicit supply functions. He also introduces a method for agents to

coordinate on one of the different possible equilibria permitted by these functions.

Given this coordination mechanism, he examines the impact of the contracts market

and how contracts can have the potential to limit entry. Newbery finds the incen-

tives to enter the contracts market differ from those of Allaz and Vila: specifically a

Cournot behaviour in the contract market can in certain circumstances induce gener-

ators to avoid entering the contract market. The outcome depends on the way gen-

erators coordinate to select one equilibrium from among the infinite set of possible

outcomes.

Green (1999) also models the spot market as a supply function equilibrium. He

solves the problem of having a multiplicity of equilibria by restricting himself to

linear supply functions. While there is an infinite set of non-linear supply function

equilibria, there is a single solution in the linear case. He models competition in

the contract market through different assumptions on conjectural variations and finds

result that differ from Allaz Vila. Specifically the combination of Cournot behaviour

in the contract market and a linear supply function equilibrium in the spot market lead

generators to not enter the contract market. Green explains that this result depends

on the linearity of the supply function.
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In both cases these different results depend on eliminating multiple supply func-

tion equilibria using different assumptions. Gans, Price and Woods (1998) work in

the context of the original model of Allaz and Vila and reaffirm their results. How-

ever, as in Newbery (1998) they note that contracts can be used to restrict entry,

leading to higher prices in the long run. Their paper provides an example that demon-

strates this outcome.

Harvey and Hogan (2000) start from Allaz and Vila’s recognition that both play-

ers are worse off after they take their forward positions and note that the two-stage

game has the payoffs of the prisoner’s dilemma game with the game repeated indefi-

nitely. It is well known that in practice, when the prisoner’s dilemma game is repeated

for a large number of periods, the players cooperate in the early periods. They argue

that the players learn to cooperate without colluding by avoiding the futures mar-

ket. A counter argument is that if the players are risk averse, they enter the forward

markets for managing risk and then have the same second-stage spot game. Liski

and Montero (2006) show that in the context of infinitely repeated games, forward

markets reduce the gain from defection and thereby increase market power.

Using data from the beginning of the restructured markets in Australia, Wolak

(2000) finds that a higher level of contracts induces increased production. He also

notes that at high enough levels, contracts can lead to production levels with negative

prices.

Joskow and Tirole (2002), look at the effects of the allocation of transmission

rights on the electric grid. They conclude that if producers in importing regions or

consumers in exporting regions own financial rights, market power is aggravated.

The converse is that if producers in exporting regions and consumers in importing

regions hold rights, market power is mitigated. Kamat and Oren (2004) examine the

effects of zonal pricing with and without transmission constraints. They reproduce

the Allaz and Vila results when the transmission constraints are not binding and show

that binding constraints mitigate the effect of forward markets.
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2.2 Bertrand electricity markets

Haskel and Powell (1992) show that in a contract market that is based on price offers,

the market clears with price equal to marginal cost. Thus, forward markets cannot

lead to increased production.

2.3 Other commodities and experiments

Le Coq and Orzen (2002) do laboratory experiments with students to test the extent

to which forward markets affect spot markets. They find that a forward market leads

to increased production, but not to the extent that theory would predict. Adding a

forward market is not as effective as increasing the number of players because the

students behaved more competitively than theory would predict.

Goering and Pippenger (2002) show that for durable commodities the optimal

strategy for a monopolist is to buy in forward markets even at a premium to the spot

price. This commits the monopolist to not flood the market with the durable good it

produces, an example of which is metals. The commitment not to flood the market

makes it possible for customers to buy more, knowing the value of their purchases

will not be eroded. The monopolist has to pay a premium because the seller has the

risk of being squeezed.

Mahenc and Salanie (2002) show that in a Bertrand market with partially differ-

entiated products the optimal strategy is to take a long position in the product market.

This raises the spot price and increases the profits for both players. Since prices are

strategic complements, both players have an incentive to buy rather than sell futures,

and, unlike Allaz and Vila, there is no prisoner’s dilemma game. They note that

this behavior was observed in coffee markets in 1977. They also show that the less

differentiated the good, the higher the spot price.
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2.4 Capacity expansion

Wu, Kleindorfer, and Sun (2002) have a capacity-expansion model in electric power

with options. They did not characterize the existence of the solution or its properties

with and without the options market.

Murphy and Smeers (2005) look at the capacity-expansion game as a two-stage

game without a futures market in the context of electricity markets. They are able

to show that the equilibrium is unique if it exists and that it does not always exist.

They show that the two-stage, closed-loop formulation leads to greater capacity than

an open-loop, single-period formulation. This is because each player sees the other’s

production decisions change in response to its increase in capacity. In some ways

this is an alternative approach to imputing conjectural variation while retaining the

Cournot formulation.

The next section begins with a simplified version of the model in Murphy and

Smeers in that we use a deterministic demand level without a load duration curve.

The model has a capacity game followed by a production game. The following sec-

tions expand on this model by adding a forward market. For uncertain demand, see

Part 2.

3 Model definition

3.1 Cost structure

Assume that generation units can be entirely characterized by their investment and

variable operations cost. For a given utilization rate (see Stoft (2002) for a discus-

sion), these costs can be expressed in $/Mwh. We let

νi be the per unit production cost,

ki be the per unit capacity cost
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3.2 Demand curve

We consider a single time period and let

p = α− q (1)

be the inverted demand curve in that period.

3.3 Variables

The most complex model considered in this paper, the three-stage closed-loop game,

assumes that agents build some capacity in a first stage, trade on the forward market

in a second stage and on the spot market in the third stage. Because the model is fully

deterministic there is no need to distinguish between forward and futures contracts

and we use these terms interchangeably. We let

xi be the capacity invested by player i

yi be the forward position, and

zi be the spot generation.

This decomposition implies that y is traded in the futures market and z − y in the

spot market. This is the decomposition assumed in Allaz-Vila. It has different possi-

ble interpretations in electricity markets. In a standard market design interpretation,

y would be traded in the day ahead market and z − y in real time. In a pure bilat-

eral system, y would correspond to OTC contracts and z − y would be the trade in

real time. Assuming again the most complex three-stage model, profit accruing at

different stages of the decision process can be computed as follows.

Let −i index the player that is not i. The profit accruing to agent i in the spot

market, or third stage, is equal to

[α− (zi + z−i)](zi − yi)− νizi. (2)

By arbitrage the spot and forward prices are equal. The sale in the forward market

therefore induces a revenue of [α− (zi + z−i)]yi. There is no cost in trading forward
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and the forward revenue is equal to the forward profit. Thus the cumulative second-

and third-stage profit in the second stage is the operating profit and equal to

[α− (zi + z−i)]zi − νizi. (3)

Player i incurs a cost −kixi for building capacity in the first stage. This is also its

first-stage profit since there is no revenue in the first stage. The cumulative three-stage

profit aggregated in the first stage is thus equal to

[α− (zi + z−i)]zi − νizi − kixi. (4)

4 The single-stage game

The open-loop game without a forward market is the simplest of the three games

considered in this paper. It is the one where agent i simultaneously decides both its

investment and sales. The most natural interpretation of this game is one where both

agents build capacity and immediately sell all the output of that capacity forward.

There is no spot market.

With the standard Cournot assumption, the Nash equilibrium (x∗i , x
∗
−i) is ob-

tained in the game when x∗i solves

max
xi≥0

[
α− (xi + x∗−i)

]
xi − (νi + ki)xi, i = 1, 2.

4.1 Equilibrium conditions

The solution to the game exists and is unique. In order to streamline the compar-

ison of the three games (single, two, and three stages), we concentrate on the case

where the single stage game has a single strictly positive equilibrium. Solving the

optimization problem of each individual player, one obtains

α− 2xi − x−i − (νi + ki) = 0

α− xi − 2x−i − (ν−i + k−i) = 0. (5)
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This can be solved to give

xi =
1
3
[
α− 2(νi + ki) + (ν−i + k−i)

]
i = 1, 2. (6)

The price of electricity is equal to

α− xi − x−i =
1
3
[
α+ (νi + ki) + (ν−i + k−i)

]
. (7)

The unit profit of player i is

1
3
[
α− 2(νi + ki) + (ν−i + k−i)

]
(8)

and the total profit

1
9
[
α− 2(νi + ki) + (ν−i + k−i)

]2
. (9)

This solution has xi strictly positive iff

α− 2(νi + ki) + (ν−i + k−i) > 0 i = 1, 2. (10)

The following is a trivial observation in this game.

Proposition 1 zi = xi, i = 1, 2 in the open-loop game.

5 A two-stage investment/spot model without a forward

market

We now consider the case of a two-stage game, namely one where players invest in

merchant plants and trade on the spot market. There is no forward market in this

model. The Spanish market is an example where there is neither a bilateral nor a

forward market. The equilibrium of this model is analyzed by working backward

from the spot market to the capacity market.
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5.1 Equilibrium conditions

Let xi be the capacities inherited from the investment stage. The equilibrium condi-

tions of the spot market are obtained when each agent solves the following optimiza-

tion problem, which is (2), with yi = 0,

max
0≤zi≤xi

[α− (zi + z−i)]zi − νizi. (11)

Here again, the existence and uniqueness in the equilibrium of the spot market are

easily established. They are obtained as the solution of the following complementar-

ity system.

α− 2zi − z−i − νi + ωi = λi i = 1, 2

xi − zi ≥ 0 λi ≥ 0 (xi − zi)λi = 0 (12)

zi ≥ 0 ωi ≥ 0 ziωi = 0

Let z(x) be the solution of these equilibrium conditions as a function of the capacities

x inherited from the first investment stage. It is easy to see that z(x) is single valued

and continuous in x. Note that z(x) is not continuously differentiable in x.

In order to simplify the presentation, we limit the discussion to the case where

the equilibrium satisfies 0 < zi ≤ xi, that is, the two producers are active at the

equilibrium. Making this simplification, the equilibrium of the spot market satisfies

one of the three following possible conditions.

(i) 0 < zi < xi; i = 1, 2

(ii) 0 < zi < xi; 0 < z−i = x−i (13)

(iii) 0 < zi = xi; 0 < z−i = x−i.

We now find the equilibrium in the investment game that accounts for the behavior

of the players in the spot market. This is commonly referred to as a subgame-perfect

equilibrium or closed-loop equilibrium (Fudenberg and Tirole (2000)). Remaining in

the simple Cournot framework, we state
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Definition 1 A closed-loop equilibrium of the two-stage game x∗, z∗(x) satisfies the

following conditions

(i) z∗(x) is a Nash equilibrium of the spot market (second-stage game) for every

feasible x

(ii) x∗ is a Nash equilibrium of the capacity market game (first-stage game) where

the payoffs of the agents are

Πi(xi;x−i) = Πi[xi, z∗i (x);x−i, z
∗
−i(x)], i = 1, 2. (14)

If there exists a closed-loop equilibrium x∗, z∗(x), then there exists a feasible neigh-

borhoodN(x∗) of x∗ (intersection of a ball centered on x∗ and the feasible set x ≥ 0)

such that

• z∗(x) is a Nash equilibrium in the spot market for all points x, x ∈ N(x∗)

• x∗ is a Nash equilibrium of the capacity market with payoffs Πi(xi, x−i); i =

1, 2, defined as in (14) in that feasible neighborhood N(x∗).

x∗, z∗(x) is a local equilibrium if x∗, z∗(x) is an equilibrium in a feasible neighbor-

hood around x∗. This is restated as

Definition 2 A local closed-loop equilibrium of the two-stage game is a closed-loop

equilibrium of the game where x is restricted to a non-empty full dimensional subset

of the capacity space.

We now extend Proposition 1 to the two-stage game. As a first step, we show that

the cases (i) and (ii) of (13) cannot hold at equilibrium. This is done in Lemmas 1

and 2. The proofs are in the appendix.

Lemma 1 Assume there is a closed-loop equilibrium of the two-stage game. Then

case (i) of (13) cannot hold at this equilibrium.

Lemma 2 Suppose there exists an equilibrium of the two stage game. Then, condi-

tion (ii) of (13) cannot hold at this equilibrium.
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Proposition 2 A closed-loop equilibrium of the two-stage game, if it exists, satisfies

z∗i = x∗i , i = 1, 2.

This immediately derives from Lemmas 1 and 2, and the assumption of existence of

the closed-loop equilibrium.

Proposition 2 immediately allows us to infer the equivalence of the open and closed-

loop equilibrium when the latter exists.

Theorem 1 The closed-loop equilibrium of the two-stage game, if it exists, is identi-

cal to the open-loop equilibrium of the single-stage game.

We now turn to the question of the existence of the equilibrium in the two-stage

game. It is well known from game theory (see Fudenberg and Tirole (2000)) that ex-

istence is not guaranteed in general. An easily verifiable condition on investment cost

allows one to guarantee the existence of this equilibrium for our particular problem.

Theorem 2 Limit the capacity space x to points such that z(x) > 0; then there exists

a closed-loop equilibrium if ki ≤ 2k−i, i = 1, 2.

Profiti

xi

-ki

x*
i x* + 

i
ki
2

zi = xi; z-i = x-i; λi, λ-i > 0 zi < xi; z-i = x-i; λ i = 0, λ-i > 0

Figure 1: Profit function when ki < 2k−i, i = 1, 2
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Figure 1 and the following discussion give the intuition of the proof. The solid curve

gives the profit of player i as a function of xi in the open loop game wen z−i = x−i.

This function is concave and has a single maximand x∗i . The profit functions of the

closed and open loop games are identical when zi = xi, i = 1, 2. The relationships

in (12) allow us to calculate the values of xi for which zi = xi, i = 1, 2. At the

open-loop solution x∗, λi = ki, i = 1, 2 and we have

α− 2x∗i − x∗−i − νi = ki

α− x∗i − 2x∗i − ν−i = k−i

or

α− 2(x∗i + ki
2 )− x∗−i − νi = 0

α− (x∗i + k−i)− x∗−i)− x∗−i − νi = 0.

That is, for xi ≤ min(x∗i + ki
2 , x

∗
i + k−i), zi = xi, with ki < 2k−i, z−i = x−i

whenever zi = xi. At xi = x∗i + ki
2 , λi = 0. Thus, for xi > x∗i + ki

2 , zi < xi and the

profit function is downward sloping with slope −ki with a single maximum at x∗i .

Consider now the case where ki > 2k−i. This situation is depicted in Figure

2. We now briefly explain the different segments of this curve: a more technical

discussion is given in the proof in the appendix. Both λi and λ−i are positive and

hence zi = xi and z−i = x−i as long as xi < x∗i + k−i. The profit functions of

player i in the open and closed loop games are identical in that region. At xi =

x∗i + k−i, λi > 0 and λ−i = 0. Figure 2 shows the expression of the profit function

of player i for xi > x∗i + k−i. Let x̂i be the maximand of that expression. In this

region z−i < x−i. Three cases can occur. One can have x̂i < x∗i + k−i in which case

x∗i is the best response of player i. One can have x̂i ≥ x∗i + k−i and the profit at x̂i

is smaller than the one at x∗i : x
∗
i is again the optimum response. The last case is the

one where x̂i ≥ x∗i + k−i and the profit is higher than the one at x∗i . x̂i is now the

best response of player i. This case is analyzed in the following lemma.
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Profiti

xi

-ki

x*
i x* + k-i i

zi = xi; z-i = x-i; λi, λ-i > 0 zi = xi; z-i < x-i; λ i > 0, λ-i = 0

~xi
~ ~~~xi

^

Figure 2: Profit function when ki > 2k−i, i = 1, 2

Lemma 3 Suppose

ki >
1
4
[
α+ ν−i − 2(ki + νi)

]
> 2k−i,

then x̂i ≥ x∗i + k−i and

Πi(x̂i, x∗−i) =
1
8
[
(α+ ν−i)− 2(νi + ki)

]2

is the profit of player i.

The proof is given in the appendix.

We now identify the condition where x̂i is an optimal response of player i to

x−i = x∗−i. Recall from (9) that the profit at x∗i , x
∗
−i is equal to

1
9

[α− 2(νi + ki) + (ν−i + k−i)]
2 .

The profit of player i at x̂i is higher than at x∗i if

1
9
[
α− 2(νi + ki) + ν−i + k−i

]2
<

1
8
[
α+ ν−i − 2(ki + νi)

]2
.

Taking the square root of both sides we get

3
2
√

2
[α+ ν−i − 2(ki + νi)]− α+ 2(νi + ki)− ν−i > k−i
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which reduces to (
3√
2
− 2

)
[α+ ν−i − 2(ki + νi)] > 2k−i. (15)

We can then estabish the result.

Lemma 4 If

ki >
1
4
[
α+ ν−i − 2(ki + νi)

]
>

(
3√
2
− 2

) [
α+ ν−i − 2(ki + νi)

]
> 2k−i

(16)

then x̂i is the optimal response to x−i = x∗−i when zi = xi at x̂i.

The result follows from the combination of Lemma 3 and relation (15).

We make the assumption zi = xi in Lemma 4 because it is possible to make a dif-

ferent spot decision in the spot game than would seem optimal in the capacity game.

The reason is that in the spot game player i sees zi as fixed. In the capacity game

player i sees how its capacity decision affects the spot equilibrium, which includes

the change in z−i. Since, from (12)

∂z−i
∂zi

= −1
2
,

when zi = xi

∂z−i
∂xi

= −1
2
.

With this perceived response, the marginal revenue as seen in the capacity game

becomes

α− 3
2
zi − z−i

instead of the standard marginal revenue in the spot market of

α− 2zi − z−i.

Thus, the perceived marginal revenue is higher in the capacity game with zi = xi.
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The largest x for which zi = xi, which we label xmi , can be found by solving

α− 2xi − z−i(x)− νi = 0.

Replacing z−i(x) with its best response to xi

α

2
− 3xi +

ν−i
2
− νi = 0

or

xmi =
α− ν−i − 2νi

3

Say x̂i ≥ xmi , we now have to calculate the profits at xmi and compare the result

with the profits in the open-loop solution. Here

zi = xmi =
1
3
(α+ ν−i − 2νi)

and

Πi(xmi , x
∗
−i) = (α− 2

3α+ νi
3 + ν−i

3 − νi − ki)
(
α+ν−i−2νi

3

)
= 1

9(α− 2νi + ν−i − 3ki)(α+ ν−i − 2νi)

Thus, if x̂i > xmi , the equilibrium exists if

(α− 2νi + ν−i − 3ki)(α+ ν−i − 2νi) < [α− 2(νi + ki) + ν−i + k−i]2.

This condition can be restated after some manipulation as

(ki − 2k−i)[α− 2(νi + ki) + ν−i] < 2k2
i + k2

−i. (17)

The following theorem summarizes the necessary and sufficient conditions for

the equilibrium to exist.

Theorem 3 Suppose we limit the capacity space x to points such that z(x) > 0.

When ki > 2k−i for some i, a closed loop equilibrium exists when the profit at x̂i is

less than the profit at the equilibrium:(
3√
2
− 2

)
[α+ ν−i − 2(ki + νi)] < 2k−i. (18)
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or when the profit at xmi is less than the profit at x∗ and xmi < x̂i:

(ki − 2k−i)[α− 2(νi + ki) + ν−i] < 2k2
i + k2

−i. (19)

A closed loop equilibrium does not exist if the profit at x̂i is greater than the profit at

x∗ and x̂i < xmi :

ki >
1
4
[
α+ ν−i − 2(ki + νi)

]
>

(
3√
2
− 2

) [
α+ ν−i − 2(ki + νi)

]
> 2k−i

(20)

holds or x̂i > xmi when

1
4
[α+ ν−i − 2(ki + νi)] > ki

and the inequality (19) is reversed.

An important special case is when both players have identical costs. The proper-

ties of this game follow directly from the theorem.

Corollary 1 When ki = k−i and νi = ν−i, the closed-loop equilibrium exists and is

equal to the open-loop equilibrium.

6 The three-stage game: the capacity game with a

forward market

We now turn to the more complex case of a game where investors in merchant plants

can contract part of their production in the forward market, trading the rest in the

spot market. The definitions of the (local) closed-loop equilibrium of the two-stage

game can be readily extended to the three-stage game after introducing additional

notation. Specifically, we let z be the vector of total production in the spot market, y

the amount traded forward and x the installed capacity. The three-stage game can be

solved backwards as follows. A spot-price equilibrium z is a vector-valued function

z(x, y) where zi solves

max
0≤zi≤xi

{
Πs
i (x, y; zi, z

∗
−i) = [α− (zi + z∗−i)](zi − yi)− νizi

}
for i = 1, 2.
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Assuming that this equilibrium solution exists and is unique, we can write, using (3),

Πf
i (x; y) = Πs

i [x, y; z(x; y)].

A forward equilibrium y is then a vector-valued point-to-set map y(x) (we show that

y(x) need not be unique) where yi(x) solves

max
yi

Πf
i (x; yi; y

∗
−i) i = 1, 2.

Assuming that this equilibrium solution exists, we define, using (4) and the above

expressions

Zi(x) = zi[x; y(x)] i = 1, 2.

We show that even though y(x) is not unique, Zi(x) is unique. We can thus define

Πi(xi, x−i) =

{α− [Zi(xi, x−i) + Z−i(xi, x−i)]− νi}Zi(xi, x−i)− kixi i = 1, 2.

The capacity equilibrium solution, if it exists, is a vector x∗ where x∗i solves

max
0≤xi

Πi(xi, x∗−i) i = 1, 2.

We therefore extend Definition 1 as follows.

Definition 3 A closed loop equilibrium of the three-stage game x∗, y∗(x), z∗(x, y)

satisfies the following conditions

• (i) z∗(x, y) is a Nash equilibrium of the spot market (third-stage game) for

every feasible x, y,

• (ii) y∗(x) is a Nash equilibrium of the forward market (second stage game) for

every feasible x,

• (iii) x∗ is a Nash equilibrium of the capacity market (first stage-game).

We now proceed to examine the different stages of this equilibrium.
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6.1 The spot market equilibrium for given forward positions

Let yi, i = 1, 2 be the forward position of the two agents. The equilibrium conditions

on the spot market can be written as

α− 2zi − z−i − νi + yi + ωi = λi i = 1, 2

(xi − zi) ≥ 0 λi ≥ 0 (xi − zi)λi = 0 i = 1, 2 (21)

zi ≥ 0 ωi ≥ 0 ziωi = 0 i = 1, 2.

Note that yi can be either positive or negative, corresponding to selling or buy-

ing in the futures market. Assume there exists an equilibrium x∗, y(x∗), z[x∗; y(x∗)].

Then the equilibrium z∗ = z[x∗, y(x∗)] of the spot market satisfies one of the follow-

ing conditions

(i) 0 < z∗i < x∗i i = 1, 2

(ii) 0 < z∗i < x∗i 0 < z∗−i = x∗−i

(iii) 0 = z∗i < x∗i 0 < z∗−i < x∗−i (22)

(iv) 0 = z∗i < x∗i 0 < z∗−i = x∗−i

(v) 0 < z∗i = x∗i 0 < z∗−i = x∗−i

We again exclude cases (iii) and (iv) where one agent is driven out of the spot market

in order to shorten the discussion.

We extend Propositions 1 and 2 to the case of the three-stage game, that is, we

prove that if a closed-loop equilibrium exists, it satisfies zi = xi, i = 1, 2 and find

conditions for the existence of this equilibrium. The following lemmas are analogous

to those proved in Section 5.

Lemma 5 An equilibrium, if it exists, cannot satisfy case (i) of (22).

The proof is given in the appendix.

We now rule out case (ii).

Lemma 6 An equilibrium, if it exists cannot satisfy case (ii) of (22).

The proof is also given in the appendix.
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6.2 Characterization of the closed-loop equilibrium

Using these two lemmas, Proposition 3 extends Proposition 2 to the three-stage game.

Proposition 3 A closed-loop equilibrium of the three-stage game, if it exists, satisfies

zi = xi, i = 1, 2.

With this result it is clear that the spot-market equilibrium zi = xi is unique assuming

a capacity market equilibrium.

Our next goal is to generalize Theorem 1 and to again show that if an equilib-

rium of the three-stage game exists, then it is the open-loop equilibrium. As with the

two-stage game, we also find that this equilibrium exists only under the conditions

in Theorem 1. We analyze this more complex case by partitioning the space of in-

vestment variables into different subsets where we further characterize equilibrium

properties.

In the subsequent lemmas we treat cases where zi < xi. Although this cannot

occur at equilibrium, this can be a property of a disequilibrium point that is relevant

to showing an equilibrium does not exist. We thus have to establish the nature of the

forward and spot-market equilibria for all possible xi > 0.

Specifically, we first consider the case where the investment variables satisfy

α − 2xi − x−i − νi > 0, i = 1, 2. (This is the case where both players use all

of their generation capacity in the spot market). Lemma 7 characterizes the equilib-

rium in the forward market for that case. We then turn to the situation where one of

the above inequalities is violated. This corresponds to the case where one of the play-

ers has invested in too much capacity in the sense that its marginal operating profit

(marginal revenue – operating cost) on the spot market is negative when both capac-

ities are fully used. Lemmas 8 and 9 show that the other player realizes that there is

an overinvestment at the tentative equilibrium; it takes advantage of the situation and

uses the forward market to drive the over-built player out of the forward market.
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Lemma 7 Let (xi, x−i) satisfy

α− 2xi − x−i − νi > 0 i = 1, 2

then

yi ≥ ỹi(x) = −(α− 2xi − x−i − νi) < 0, i = 1, 2

is a closed-loop equilibrium of the forward market.

The intuition of the proof (given in the appendix) is as follows. Suppose a position

y−1 ≥ ỹ−i(x) of player i. Any position yi ≥ ỹi(x) guarantees zi = xi and z−i = x−i

and hence a constant profit of player i. A position yi < ỹi(x) results in zi < xi, which

cannot improve the profit of player i as long as (α− 2xi − x−i − νi) > 0.

We now examine the case of overbuilding by player i. Consider now what hap-

pens when one of the relations

α− 2xi − x−i − νi > 0 i = 1, 2

is violated. Let

α− 2xi − x−i − νi < 0 and α− xi − 2x−i − ν−i > 0.

This case corresponds to case (ii) of Theorem 2 in the game without a futures market.

The analysis is more complicated with a futures market because we have to analyze

the resulting futures positions of the players.

Lemma 8 shows that player −i can always drive player i out of the forward

market by selecting y−i large enough.

Lemma 8 For a given (xi, x−i), if α−2xi−x−i−νi < 0 and α−xi−2x−i−ν−i > 0,

then yi = 0 is the optimal response of player i to any y−i ≥ ỹ−i(x).

The intuition of the proof (given in the appendix) is as follows. One first shows

that player −i (which did not overbuild, α− xi − 2x−i − ν−i > 0) can always force
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z−i = x−i in the spot market whatever player i (which overbuilt (α−2xi−x−i−νi <
0) does, by taking any position y−i ≥ ỹ−i(x).

As shown in the proof, because z−i = x−i and does not change with yi, the profit

function of player i in the futures market is

πi(x, y) =
1
4
[(α− x−i − νi)2 − y2

i ]

and profit is maximized when yi = 0.

Lemma 9 Suppose α − 2xi − x−i − νi < 0 and α − xi − 2x−i − ν−i > 0. Then

y−i ≥ ỹ−i(x) is the optimal reaction of player −i to yi = 0.

The idea of the proof is that the best response of player −i (which did not over-

build (α − xi − 2x−i − ν−i ≥ 0) to the strategy yi = 0 of player i (which over-

built (α − 2xi − x−i − ν−i < 0) is to produce at capacity. It can do so by setting

y−i ≥ ˜̃y−i(x).
We now characterize the solution when player i has excess capacity.

Lemma 10 Let (xi, x−i) satisfy α−2xi−x−i−νi < 0 and α−xi−2x−i−ν−i > 0

and ỹ−i(x) = −(α− xi − 2x−i − ν−i). Then yi = 0, y−i ≥ ỹ−i(x) is a closed-loop

equilibrium of the forward market. At that equilibrium zi < xi.

The result is a combination of Lemmas 8 and 9 after noting that ỹ−i(x) = −(α −
xi − 2x−i − ν−i) ≥ −(α− z̃i − 2x−i − ν−i).

Lemma 10 has an immediate interpretation. If a player develops its generation

capacity up to a point where its marginal revenue is negative when both capacities

are operated at their maximums, then the equilibrium on the forward market forces

this player to operate below capacity. In short it has effectively invested too much

and can increase profits by reducing capacity. We now show that this cannot be an

equilibrium.
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Lemma 11 There cannot be any equilibrium of the capacity game with a forward

market such that α− 2xi − x−i − νi < 0 and α− xi − 2x−i − ν−i > 0.

The proof is given in the appendix.

We now explore whether one can have an equilibrium of the capacity game with

a forward market such that α − 2xi − x−i − νi < 0, i = 1, 2. This corresponds to

case (ii) in the game with no forward market. The situation is easily clarified with the

following lemma.

Lemma 12 An equilibrium of the capacity game with a forward market cannot sat-

isfy α− 2xi − x−i − νi < 0, i = 1, 2.

The proof is given in the appendix.

On the basis of the above, we conclude that an equilibrium of the capacity game

with a forward market, if it exists, satisfies α − 2xi − x−i − νi > 0, i = 1, 2 and

zi = xi, i = 1, 2. We infer the following proposition.

Proposition 4 An equilibrium of the capacity game with a forward market, if it ex-

ists, satisfies αi − 2x∗i − x∗−i − νi ≥ 0, i = 1, 2.

Proof. The result is immediately derived from lemmas 11 and 12.

We can now present the extension of Proposition 2 to the three-stage game.

Proposition 5 An equilibrium of the capacity game, if it exists, is the open-loop equi-

librium.

The proof is given in the appendix.

This means that the capacity game sets capacities at the same level as in the open-

loop game. Thus, the futures market cannot be used to expand production in the spot

market. Through the capacity game, the players see the destructive competition that

results from the futures game and they block this possibility when setting capacity

levels.
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6.3 Existence of the closed-loop equilibrium

In the game without a futures market, existence is not guaranteed and depends on the

values of the parameters. We now develop the corresponding results for the three-

stage game. We take the open-loop capacities at equilibrium

x∗i =
1
3
[
α− 2(νi + ki) + (ν−i + k−i)

]
i = 1, 2

and show when they are the capacity equilibrium of the three-stage game. We have a

similar result as in the game with no futures market. We first note that player i never

gains if it reduces its capacity with respect to x∗i , given x−i = x∗−i. The only way

the open-loop equilibrium can fail to be a first-stage equilibrium of the three-stage

game is if one player can benefit from increasing its investment with respect to x∗i
with x−i unchanged at x∗−i. In order to explore this possibility, we increase xi. Let

xi = x∗i + εi while keeping x−i = x∗−i.

Consider first the range of values of xi that keep α−2xi−x∗−i−νi > 0, i = 1, 2.

We know that the equilibrium in the forward market is to select yi, i = 1, 2 so that

zi = xi, i = 1, 2. Because of the optimality properties of the open-loop equilibrium,

we can conclude that player i has no interest in increasing or decreasing xi as long as

one remains in the region α− 2xi − x−i − νi > 0, i = 1, 2.

In order to assess whether x∗i is really the optimal choice of player i, we need to

explore what happens when a player leaves the region α − 2xi − x−i − νi > 0 for

either i = 1, 2. Consider the two possible cases

(i) xi = x∗i + εi with α− 2xi − x∗−i − νi = 0 and α− xi − 2x∗−i − ν−i > 0

(ii) xi = x∗i + εi with α− xi − 2x∗−i − ν−i = 0 and α− 2xi − x∗−i − νi > 0

Case (i) is handled by the following lemma and is equivalent to Theorem 2.

Lemma 13 If ki < 2k−i, then xi = x∗i is the best reaction of player i to x−i = x∗−i.

The proof (given in the appendix) essentially shows that the profit of player i as

a function of xi is identical to the one depicted in Figure 1. The reasoning is not
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identical though as zi < xi for xi > x∗i + ki
2 is obtained by a change of strategy on

the forward market (setting yi = 0). Going beyond x∗i + k−i can only reduce profits

by pushing player i in an overinvestment zone (α− 2xi − x−i − νi < 0).

We know from above that it is never optimal for i to select xi ≤ x∗i + ki
2 strictly

larger than x∗i . Consider now xi > x∗i + ki
2 such that α − 2xi − x∗−i − νi < 0 and

α−xi− 2x∗−i− ν−i > 0. From Lemma 10 we know that the associated forward and

spot equilibrium satisfies yi = 0, zi < xi. This cannot be an optimal position for i

since it can always be improved by slightly decreasing xi.

Consider now xi ≥ x∗i + k−i such that α − 2xi − x∗−i − νi < 0 and α − xi −
2x∗−i − ν−i ≤ 0. This is an optimal position for i if there exists a forward and spot

equilibrium that gives a higher profit than the single-stage equilibrium. Assume such

an equilibrium. It cannot satisfy zi = xi, i = 1, 2 because this would give a negative

marginal revenue to player i even before incurring investment costs. It cannot satisfy

zi < xi, z−i = x−i because i could improve its position by decreasing xi. It must

thus satisfy zi = xi and z−i < x−i. As in the reasoning in Lemma 8, this implies

y−i = 0 and z−i = α−xi−ν−i
2 . Replacing in α− 2xi− z−i− νi the marginal revenue

of i is

1
2
[
α− 3xi − (2νi − ν−i)

]
which is equal to

1
2
[
− (α− xi − 2x∗−i − ν−i) + 2(α− 2xi − x∗−i − νi)

]
.

By definition, this expression is negative at xi = x∗i + k−i. It can only decrease

when xi increases. The marginal revenue of player i is thus negative before incurring

investment costs and this cannot be an optimal position.

Case (ii) is treated in Lemma 14 and is close to Lemma 4 in the case without

futures.
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Lemma 14 Let ki > 2k−i and(
3√
2
− 2

) [
α+ ν−i − 2(ki + νi)

]
− 2k−i ≤ 0. (23)

Then xi = x∗i is the best reaction of player i to x−i = x∗−i.

The proof is given in the appendix.

Consider now xi > x∗i +k−i such that α−2xi−x∗−i−νi > 0 and α−xi−2x∗i −
ν−i < 0. From Lemma 10 we know that the associated forward and spot equilibrium

satisfies y−i = 0, z−i < x−i and that yi is selected such that zi = xi. These

conditions are analyzed in the preliminaries to Lemma 3. Because the equilibrium of

the forward market guarantees that zi = xi for xi ≥ x∗i + k−i, we conclude from the

reasoning of Lemma 3 that the condition

1
4
[α+ ν−i − 2(ki + νi)] > 2k−i

implies that

Πi(x̂i, x∗−i) =
1
8
[(α+ ν−i)− 2(νi + ki)]2.

As in Lemma 4 the assumptions guarantee that player i cannot improve its position

with respect to the open loop profit by moving into a range where z−i < x−i.

Consider now zi ≥ x∗i + ki
2 > x∗i + k−i. We then have α− 2xi − x∗−i − νi < 0

and α−xi−2x∗−i−ν−i < 0. These conditions have been encountered in Lemma 13

and they do not lead to an optimal position for player i.

Lemma 14 points to an interesting differentiation between the two and three stage

games. In the game without a futures market, when setting capacity, player i satisfies

α− 2xi − z−i − νi ≥ 0

as long as xi ≤ xmi . This condition guarantees that zi = xi in the spot market.

With a futures market the condition for zi = xi in the spot market becomes

α− 2xi − z−i − νi + yi ≥ 0. (24)
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Lemma 10 guarantees that the equilibrium of the forward market when α − 2xi −
x−i − νi > 0 and α − xi − 2x−i − ν−i < 0 is achieved for yi large enough and

y−i = 0 and that (24) indeed holds.

We relate the effect of the futures market on the need to consider the possibility of

zi < x̂i to the Allaz-Vila result. Assume xmi < x̂i. The optimality condition in the

no-futures game is

α− 2zi − z−i − νi = 0.

The coefficient 2 is standard in the Cournot duopoly game. Having a futures market

changes that coefficient as we now see. Initially assume yi = y−i = 0 and we are at

the no-futures equilibrium ẑ in the spot market with ẑi < x̂i and ẑ−i < x−i. From

(21)

∂zi
∂yi

=
1
2

for zi < xi

since

∂z−i
∂zi

= −1
2

for z−i < x−i,

we have

∂z−i
∂yi

= −1
4
.

The derivative of the profit function in the futures game at ẑ is

∂πi(x, y)
∂y

= (α− ẑi − ẑ−i − νi)1
2 + (−1

2 + 1
4)ẑi

= α− 3
2 ẑi − ẑ−i − νi > 0

The inequality holds because 3
2 < 2. Thus, the optimal zi in the futures optimization

is greater than without a futures market. This is the Allaz-Vila effect. It turns out

that adding the futures market guarantees zi = x̂i, and xmi > x̂i. Thus the spot

market equilibrium condition does not put an added condition on the existence or

non existence of an equilibrium as it did in the game without a futures market.
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Theorem 4 A closed-loop equilibrium of the three-stage game exists if one of the

following conditions holds

(i) ki < 2k−i, i = 1, 2

(ii) For ki > 2k−i for some i, if (23) holds, then the open-loop equilibrium is also

the closed-loop equilibrium of the three-stage game.

The solution does not exist when the inequality (23) is reversed.

The proof derives from applying Lemmas 13 through 14 to both players.

From this we can see that adding a futures game does not change the equilibrium

with respect to the two-stage game. However, the game with a futures market has

no equilibrium for a larger set of parameter values than the game without a futures

market because the condition on the spot-market equilibrium is no longer needed.

Appendix

Proof of Lemma 1

Suppose

0 < z∗i < x∗i i = 1, 2.

The system (12) reduces to

α− 2z∗i − z∗−i − νi = 0 i = 1, 2 or z∗i =
1
3
[α− (2νi − ν−i)]

There exists a ball centered on x∗ such that for all x in that ball, z∗(x) = z∗ is the

best response. Therefore (x∗, z∗(x∗)) is a local equilibrium of the capacity game.

For this equilibrium the profit of i before paying for capacity is

1
9
[
α− (2νi − ν−i)

]2
.
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After paying for capacity, the profit is

1
9
[
α− (2νi − ν−i)

]2 − kix∗i . (25)

However, (25) cannot be a local maximum of the payoff of player i with respect to xi

because we can reduce xi to improve the payoff.

Proof of Lemma 2

Assume

0 < z∗i < x∗i and z∗−i = x∗−i.

The system (12) reduces to

z∗i = 1
2(α− x∗−i − νi)

z∗−i = x∗−i

Set

zi(x) = 1
2(α− x−i − νi)

z−i(x) = x−i.

It is trivial, to verify that there exists a ball centered on x∗ such that for all x in

that ball z(x) is the best response. Using the same argument as in Lemma 1, having

x∗i > z∗i implies that one can always decrease xi by a small amount and achieve a

higher profit. Therefore, this is not a local equilibrium and hence not an equilibrium.

Proof of Theorem 1

Let xci and zci , i = 1, 2 be the closed-loop solution of the two-stage game. By Propo-

sition 2, this equilibrium, if it exists, satisfies zci = xci , i = 1, 2. This implies

α− 2xci − xc−i − νi = λci ≥ 0, i = 1, 2.

Consider a decrease of xi from xci while keeping x−i equal to xc−i. Note that as

xci decreases, λci increases. Thus, zi = xi, i = 1, 2 satisfies the spot equilibrium

conditions (12). This implies that the first-stage objective function of i is equal to

Πi(xi;xc−i) ≡ (α− xi − xc−i − νi)xi − kixi
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when xi is decreased with x−i = xc−i. Note that Πi(xi, xc−i) is concave in xi. Be-

cause xc is a closed-loop equilibrium, Πi achieves a maximum at xci given x−i = xc−i.

One has

α− 2xci − xc−i − νi − ki ≥ 0

and hence

λci ≥ ki > 0.

Because λci > 0, there exists a neighborhood of xc such that for x in that neigh-

borhood, zi = xi, i = 1, 2 satisfies the system (12) and hence remains the spot

equilibrium in that neighborhood. Adapting the above reasoning to variations of xi

in excess of xci one finds λci = ki. Therefore, the closed-loop equilibrium of the

two-stage game xc, if it exists, satisfies the same conditions (4), as the open-loop

equilibrium and hence is identical to it.

Proof of Theorem 2

Because of Theorem 1, we know that a closed-loop equilibrium of the two-stage

game, if it exists, is identical to the open-loop equilibrium of the single-stage game.

We, therefore, identify sufficient conditions for the open-loop equilibrium to also be a

closed-loop equilibrium. The open-loop equilibrium x∗ satisfies α−2x∗i−x∗−i−νi =

λ∗i = ki.

a) Let xi < x∗i . Then one can check that the second-stage equilibrium z∗(x) remains

z∗(x) = x. Because of the optimality properties of the equilibrium of the

single-stage game, there cannot be a higher profit for player i when xi < x∗i .

(b) Let xi > x∗i . As xi is increased, three possibilities can occur

(i) λi becomes zero before λ−i becomes zero

(ii) λ−i becomes zero before λi becomes zero.

(iii) λi becomes zero exactly when λ−i becomes zero
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We successively consider the three cases in (b).

(i) λi = 0 before λ−i = 0. Let x̃i be the value of xi for which λi reaches 0. One

has

α− 2x̃i − x∗−i − νi = 0 or x̃i = 1
2(α− x∗−i − νi)

α− x̃i − 2x∗−i − ν−i > 0 or α− 1
2α+ 1

2x
∗
−i − 2x∗−i +

1
2νi − ν−i > 0.

That is,

1
2
α− 3

2
x∗−i +

1
2
(νi − 2ν−i) > 0

or equivalently

α+ (νi − 2ν−i) > 3x∗−i.

Replacing x∗−i by its equilibrium value found in the single stage game (relation

(6)), we obtain that

α+ (νi − 2ν−i) > α− 2(ν−i + k−i) + (νi + ki)

or 2k−i > ki.

Therefore case (i) occurs iff 2k−i > ki. Suppose this inequality holds. One has

α− 2zi − x∗−i − νi = 0 with zi < xi for xi > x̃i. This implies that λ−i never

reaches 0, which in turn implies that z−i = x∗−i and the profit Πi is constant

for xi > x̃i. Therefore, choosing xi > x̃i cannot improve the profit of player

i. Summing up, assuming 2k−i > ki, i = 1, 2, neither player can increase its

profit by increasing xi with respect to the open-loop solution. This open-loop

equilibrium is thus also a closed-loop equilibrium.

(ii) λ−i = 0 before λi. Using the same steps as in (i), ki > 2k−i which violates the

assumption that 2k−i ≥ ki.

(iii) xi = x̃i simultaneously makes λi and λ−i equal to 0. One thus has ki = 2k−i
and

α− 2x̃i − x∗−i − νi = 0 and α− x̃i − 2x∗−i − ν−i = 0. (26)
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Let x′i = x̃i + ε, ε > 0. z−i = x∗−i and zi = x̃i < x′i are the equilibrium in the

spot market by (26). Thus,

Πi(x′i, x
∗
−i) = Πi(x̃i, x∗−i)− kiε < Πi(x̃i, x∗−i).

By the optimality of x∗i , in the range x∗i ≤ xi ≤ x̃i and the concavity of the

profit function in this range

Πi(x∗i , x
∗
−i) > Πi(xi, x∗−i) ≥ Πi(x̃i, x∗−i) > Πi(x′i, x

∗
−i)

which shows that it does not pay to increase xi beyond x∗i .

Define ˜̃xi as the point where λ−i becomes zero, as in case (b) (ii) of Theorem 2.

We first note that ˜̃xi satisfies α − ˜̃xi − 2x∗−i − ν−i = 0 or after substitution of the

value of x∗−i,
˜̃xi = x∗i + k−i. Following the reasoning of Theorem 2, the open-loop

equilibrium can fail to be a closed loop equilibrium only if i has an incentive to invest

xi beyond the point ˜̃xi where λi > 0 and λ−i = 0. We explore this situation. Because

λ−i = 0, z−i < x−i and the second-stage equilibrium implies for xi > ˜̃xi as long as

λi > 0.

α− 2xi − z−i − νi = λi > 0

α− xi − 2z−i − ν−i = 0

with z−i(xi) = 1
2(α − xi − ν−i) < x∗−i. Replacing z in Πi(x, z) by this expression

while keeping zi = xi in expression (14), the profit becomes

Πi(xi;x∗−i)] =
[
α− xi − 1

2(α− xi − ν−i)− νi
]
xi − kixi

= 1
2 [α− xi + (ν−i − 2νi)]xi − kixi.

(27)

An optimum of Πi(xi;x∗−i) for xi > ˜̃xi can occur only if the derivative of

Πi(xi, x∗−i) at ˜̃xi is positive. Assume it is positive. What we ultimately need is

that the optimal objective function value of player i for xi > ˜̃xi is larger than the
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optimum at the open-loop equilibrium. We thus compute the optimal xi ≥ ˜̃xi that

equates the derivative of Πi(x;x∗−i) to zero and verify that this optimal xi falls in the

region where (27) is a valid expression of the profit of i. Let x̂i be this value; it is

equal to

x̂i =
1
2
[
α+ ν−i − 2νi − 2ki

]
=

1
2
(
α+ ν−i

)
− (νi + ki).

Replacing xi by x̂i in (27) we obtain

Πi(x̂i;x∗−i) =
1
8
[(α+ ν−i)− 2(νi + ki)]2. (28)

In order for x̂i to be an optimal response of player i to x−i = x∗−i, we need to find

the condition that guarantees that

(a) (28) is indeed the correct expression of Πi(x̂i, x∗−i), that is, x̂i ≥ ˜̃xi and zi = xi

when xi = x̂i.

(b) 1
8

[
(α+ ν−i)− 2(ν−i + ki)

]2
> 1

9

[
(α− 2(νi + ki) + ν−i + k−i

]2
.

We take up these two questions in the following lemma.

Proof of Lemma 3

We first find the condition for x̂i ≥ ˜̃xi = x∗i + k−i. We need

1
2
[
α+ ν−i − 2(ki + νi)

]
− 1

3
[
α+ ν−i + k−i − 2(ki + νi)

]
> k−i

or

1
4
[
α+ ν−i − 2(ki + νi)

]
> 2k−i.

Consider now the conditions that guarantee zi = xi for xi = x̂i. One has zi = xi if

α− 2xi − z−i(xi)− νi ≥ 0

or after replacement of z−i(xi)

α

2
− 3xi +

ν−i
2
− νi ≥ 0.
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The maximal value of xi, xmi , that satisfies this condition is

xmi =
α+ ν−i − 2νi

3
.

One thus needs that x̂i ≤ xmi or

3
2
(α+ ν−i)− 3(νi + ki) < (α+ ν−i)− 2νi

that can be rewritten as

1
2
(α+ ν−i)− ν−i − ki < 2ki

or

1
4
[
(α+ ν−i)− 2(ki + νi)

]
< ki

which completes the lemma.

Proof of Lemma 5

Let x∗, y∗ = y(x∗), z∗ = z[x∗; y(x∗)] be the equilibrium and assume that it satisfies

condition (i) of (22). The equilibrium conditions are

α− 2z∗i − z∗−i − νi + y∗i = 0

α− z∗i − 2z∗−i − ν−i + y∗−i = 0

0 < z∗i < x∗i i = 1, 2

Replacing νi + ki by νi − y∗i in the expression of the solution of the single-stage

(open-loop) equilibrium (6),

z∗i = z∗i (y
∗) =

1
3
[α− 2(νi − y∗i ) + (ν−i − y∗−i)]. (29)

There exists a neighborhood N(y∗) of y∗ such that (29) satisfies 0 < zi(x∗, y) < x∗i
and hence remains an equilibrium of the spot market. Inserting these expressions in

Πs
i [x
∗, y, z],

Πf
i [x
∗, y] =

1
9
[α− 2(νi − yi) + (ν−i − y−i)]2. (30)
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Using the first order equilibrium condition,

y∗i =
1
5
[α− (3νi − 2ν−i)]

and z∗i = 2
5 [α− (3νi − 2ν−i)]. Thus, there exists a neighborhood N(x∗) of x∗ such

that

y∗(x) = y∗ and Z∗(x) = z∗[x, y∗(x)] = z∗ are the best responses to any x in N(x∗).

For any x in N(x∗)

Πi(x) =
2
25

[
α− (3νi − 2ν−i)

]2 − kixi.

Because x∗i > z∗i and y∗i does not depend on x, Πi(x) increases by slightly decreasing

x from x∗i which contradicts the assumption that x, y∗(x), Z∗(x) is an equilibrium

Proof of Lemma 6

Let x∗, y(x∗), z[x∗, y(x∗)] be an equilibrium satisfying case (ii). One has

α− 2z∗i − x∗−i − νi + y∗i = 0 0 < z∗i < x∗i
α− z∗i − 2x∗−i − ν−i + y∗−i = λ∗−i 0 < z∗−i = x∗−i.

If it is an equilibrium, it is also a local equilibrium. Keeping x fixed at x∗ and letting

y move around y(x∗), we find the following solution to the system

zi = 1
2(α− x∗−i − νi + yi)

λ−i = α− 2x∗−i − ν−i + y−i − 1
2(α− x∗−i − νi + yi)

= α
2 − 3

2x
∗
−i − 1

2(2ν−i − νi) + 1
2(2y−i − yi).

We consider the impact of a modification of yi on the payoff of player i in the forward

market given y∗−i fixed. The spot price is equal to

α− zi − x∗−i = α− 1
2
(α− x∗−i − νi + yi)− x∗−i =

1
2
(α− x∗−i + νi − yi).

The corresponding profit accruing to player i in the forward market, that is, after

taking into account forward positions, is equal to

(α− zi − x∗−i − νi)zi = 1
2(α− x∗−i − νi − yi)1

2(α− x∗−i − νi + yi)

= 1
4 [(α− x∗−i − νi)2 − y2

i ].
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By assumption, y∗i maximizes player i’s payoff for given y∗−i and x∗. This implies

that y∗i must be zero. Player i’s medium term payoff on the forward market is thus
1
4 [(α − x∗−i − νi)]2. This implies that the profit achieved on the capacity market is
1
4 [(α − x∗−i − νi)]2 − kix

∗
i . Reducing x∗i by a small amount to xi < x∗i , yi = 0

remains the optimal strategy on the futures market and z∗i remains unchanged and

strictly less than xi. This reduction improves player i’s payoff in the capacity market

which was therefore not optimal. This proves the lemma.

Proof of Lemma 7

Take x given and let ỹi = ỹi(x), i = 1, 2 for this given x. One has

α− 2xi − x−i − νi + ỹi = 0, i = 1, 2

and hence zi = xi is an equilibrium on the spot market.

We want to prove that any yi ≥ ỹi is the best response of player i to a futures

position y−i ≥ ỹ−i of player −i. Suppose yi > ỹi, one has

α− 2xi − x−i − νi + yi = λi > 0

α− xi − 2x−i − ν−i + y−i = λ−i ≥ 0

and zi = xi remains an equilibrium on the spot market. Taking yi > ỹi therefore

maintains the profit of player i, whatever y−i ≥ ỹ−i is selected by player −i.
Take yi < ỹi, y−i ≥ ỹ−i. zi becomes smaller than xi and one can write the equilib-

rium conditions of the spot market as

α− 2zi − x−i − νi + yi = 0

α− zi − 2x−i − νi + y−i = λ−i > 0.

This implies

zi =
1
2
(α− x−i − νi + yi)

and

Πf
i (x; yi, y−i) =

1
4
[
(α− x−i − νi)2 − y2

i

]
.
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The optimum of the profit of player i is achieved for yi = 0 with a payoff equal to
1
4(α− x−i − νi)2. This is the global optimum of player i if and only if

0 = yi < ỹi = −(α− 2xi − x−i − νi) < 0 which is a contradiction.

Therefore, yi < ỹi cannot be the best response of player i to y−i ≥ ỹ−i. Thus ỹi(x),

i = 1, 2 is a closed-loop equilibrium of the forward market and any yi ≥ ỹi(x),

i = 1, 2 is also a closed-loop equilibrium of the forward market.

Proof of Lemma 8

We first show that zi < xi when yi = 0. Suppose player −i takes a position ȳ−i ≥
ỹ−i(x).

We first claim that the equilibrium in the spot market is

α− 2zi − x−i − νi = 0

α− zi − 2x−i − ν−i + ȳ−i = λi ≥ 0.

To see this, first note that, because α− 2xi−x−i− νi < 0, there exists some zi < xi

(that we assume > 0) that solves α − 2zi − x−i − νi = 0. Note that the definition

of ỹ−i(x) implies α − xi − 2x−i − ν−i + ỹ−i(x) = 0 and hence any zi < xi and

y−i > ỹ−i(x) satisfies α − zi − 2x−i − ν−i + y−i = λ−i ≥ 0, which shows that

zi < xi and z−i = x−i is the equilibrium.

Consider the reaction of player −i to y−i > 0. Because y−i ≥ ỹ−i(x), α− xi −
2x−i − ν−i + y−i > 0, α − zi − 2x−i − ν−i + y−i > 0 for all zi < xi. Therefore,

z−i = x−i whenever y−i ≥ ỹ−i(x), whatever the position of player i on the forward

market.

Consider the following strategies of player i, keeping in mind that y−i ≥ ỹ−i(x)

implies z−i = x−i, whatever i does on the forward market. Because the shape of the

objective function depends on the value of yi, we treat two cases:

(i) yi ≥ ỹi(x) = −(α− 2xi − x−i − νi) > 0

37



(ii) yi ≤ ỹi(x) = −(α− 2xi − x−i − νi) > 0.

Note first that player i’s payoff in case (i), remains constant at (α−xi−x−i−νi)xi for

all yi ≥ ỹi(x). Therefore player i cannot improve its payoff by selecting yi ≥ ỹi(x)

and the optimum in case (ii) is a global optimum.

Player i’s payoff in case (ii) can be computed as follows. Because yi ≤ ỹi(x),

zi ≤ xi and zi solves

α− 2zi − x−i − νi + yi = 0

α− zi − 2x−i − ν−i + y−i = λ−i > 0.

As in Lemma 7, the optimal response of player i is

zi =
1
2
(α− x−i − νi + yi) < xi

and

Πf
i (x; yi, y−i) =

1
4
[
(α− x−i − νi)2 − y2

i

]
.

The maximum profit is achieved for yi = 0 with the player i payoff equal to 1
4(α −

x−i − νi)2. This will be the global optimum of player i’s payoff if one has both

0 = yi < ỹi(x) = −(α− 2xi − x−i − νi) > 0

and

1
4
(α− x−i − νi)2 > (α− xi − x−i − νi)xi.

The first condition is true by assumption. To verify the second condition, first note

that it can be rewritten

(α− x−i − νi)2 − 4(α− x−i − νi)xi + 4x2
i > 0

or

(α− 2xi − x−i − νi)2 > 0

which is always satisfied.

The optimal reaction of player i is thus yi = 0 when player −i selects y−i ≥ ȳ−i
and α− 2xi − x−i − νi < 0. Note that this solution is unique by the strict concavity

of the objective function in this range. This proves the lemma.
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Proof of Lemma 9

With yi = 0, define z̃i such thatα−2z̃i−x−i−νi = 0. Becauseα−2xi−x−i−νi < 0,

z̃i is smaller than xi. We consider three cases because the shape of the objective

function of player −i depends on whether the spot decisions are at capacity. We

examine the following strategies of player −i on the forward market.

(i) y−i is selected to guarantee z−i = x−i.

(ii) y−i is selected to optimize the payoff in the range where zi < xi, z−i < x−i.

(iii) y−i is selected to optimize the payoff in the range where zi = xi, z−i < x−i.

We successively consider these three cases and compute the resulting payoff for

player −i.

(i) Player −i uses the futures market to guarantee the full utilization of its capacity

and it takes y−i ≥ ˜̃y−i(x) where ˜̃y−i(x) is defined by

α− z̃i − 2x−i − ν−i + ˜̃y−i(x) = 0.

This amounts to selecting

y−i ≥ ˜̃y−i(x).
The equilibrium on the spot market associated with yi = 0, y−i ≥ ˜̃y−i(x) is

zi = z̃i and z−i = x−i. The payoff for player −i is

(α− z̃i − x−i − νi)x−i =
1
2
(α− x−i − νi)xi.

(ii) Let y−i = ˜̃y−i(x) − ε−i where ε−i is small enough to guarantee that zi does

reach xi and z−i does not hit zero. zi and z−i then solve the system

α− 2zi − z−i − νi = 0

α− zi − 2z−i − ν−i + y−i = 0
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We can solve for zi and z−i as a function of y−i, as in Lemma 5. Setting yi = 0

in relation (30), the payoff for −i is

Πf
−i[x; 0, y−i] =

1
9
[
α− 2(ν−i − y−i) + νi

]2
.

The derivative of Πf
−i with respect to y−i is 4

9 [α− 2(ν−i − y−i) + νi]. At ˜̃y−i,
when z−i reaches x−i, this derivative is equal to

4
9
[
α− (2ν−i + νi) + 2˜̃y−i] =

4
9
x−i > 0.

Because Πf
−i[x; 0, y−i] is concave in y−i, and its derivative at ˜̃y−i(x) is pos-

itive, it is still increasing at that point. Thus, the optimum of Πf
−i[x; 0, y−i]

cannot be y−i < ˜̃y−i(x). This implies that y−i = ˜̃y−i − ε−i is not the best

response by player −i.

(iii) The following elaborates on the same concavity argument to prove that de-

creasing y−i to the level where zi reaches xi or z−i reaches 0 cannot maximize

Πf
−i[x; 0, y−i]. There is obviously no gain for player −i to further decrease

y−i if z−i hits zero before zi reaches xi since its payoff is then exactly zero.

Consider the alternative case where zi hits xi and z−i is still positive. This

occurs for some z−i that satisfies

α− 2xi − z−i − νi = 0

or z−i = α− 2xi − νi.

Consider decreasing y−i further to check the possibility of the resulting price

increasing profits. We show that this cannot happen. Let z−i = z−i + ε. The

corresponding profit of player −i is

(α− xi − z−i − ε− ν−i)(z−i + ε).

The derivative of this expression at ε = 0 (for z−i = z−i) is equal to 3xi +

(2νi − ν−i)− α. This expression is positive because it is equal to

2(−α+ 2xi + x−i + νi) + (αi − xi − 2x−i − ν−i)
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which is positive by assumption.

The conclusion is that it cannot pay to further decrease yi beyond the point

where zi = xi. y−i ≥ ỹ−i(x) thus guarantees the maximal profit of player −i
when yi = 0.

This completes the proof of the lemma.

Proof of Lemma 11

Assume such an equilibrium exists. The equilibrium on the forward market is yi = 0

and y−i ≥ ȳ−i with the corresponding spot equilibrium zi = 1
2(α−x−i− νi), z−i =

x−i. This spot equilibrium satisfies zi < xi and hence cannot be an equilibrium by

Proposition 3.

Proof of Lemma 12

If such an equilibrium exists, it satisfies zi = xi, i = 1, 2 by Proposition 3. Because

the marginal revenue of both player is negative at this point, this cannot be an optimal

position for either of them. Therefore, this is not an equilibrium.

Proof of Proposition 5

Assume an equilibrium of the three-stage game exists. By Proposition 4, one has

α− 2xi − x−i − νi ≥ 0, i = 1, 2. α− 2xi − x−i − νi is also the marginal operating

profit accruing to player i from its operation on the forward and spot market (both

players select yi such that zi = xi). The optimality of player i’s action in the capacity

game implies that the marginal operating profit is equal to ki. We therefore need

α − 2xi − x−i − νi − ki = 0, i = 1, 2. These are the conditions for the open-loop

equilibrium. We thus conclude that if an equilibrium of the three-stage game exists,

it is the open-loop equilibrium.
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Proof of Lemma 13

Set xi = x∗i + εi. Simple replacement in α− 2xi−x∗−i− νi = 0 and α−xi− 2x∗i −
ν−i > 0 shows that case (i) holds if and only if 2k−i > ki. If so α−2xi−x∗−i−νi = 0

for εi = ki
2 .

Proof of Lemma 14

Following the reasoning of Lemma 12, we can easily verify that case (ii) occurs if

and only if ki > 2k−i. We know that selecting xi such that x∗i < xi ≤ x∗i + k−i

would imply zi = xi, z−i = x∗−i which cannot be an optimal payoff of player i in

that range of xi.
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