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Abstract

We investigate the incentives for capacity investments in a simple strategic dynamic model with
random demand growth. We construct non-collusive Markovian equilibria where the firms’ decisions
depend on the current capacity stock only. The firms maintain small reserve margins and high market
prices, and extract large rents. In some equilibria, rationing occurs with positive probability, so the
market mechanism does not ensure ‘security of supply’. The price cap reflects the value of lost energy or
lost load (VOLL) that consumers place on severily reducing consumption on short notice. Our welfare
analysis suggests that a lower value for the price cap would reduce market prices and increase consumer
surplus, without affecting the level of investment.

1 Introduction
As liberalized electricity markets have emerged around the world, concerns have been raised about their
performance (see Sioshansi and Pfaffenberger (2006), Joskow (2006) and Jamasb and Pollitt (2005)). In
this paper we focus on the particular issue of whether these markets provide adequate incentives for
investments in new generating capacity. Smaller reserve margins in these new markets seem to indicate
that investment in new generation and transmission capacity has not kept pace with demand growth.
Consequently, these markets are not maintaining the same level of reliability that was enforced when the
electricity sector was composed of vertically-integrated, regulated monopolies.

The short run reliability of the system depends on the ability of the independent system operator (ISO)
to balance supply and demand in real time given the existing generation and transmission capacities of
the network. For instance, in order to deal with unexpected contingencies, some generating capacity must
be available to start up on short notice (“spinning reserve”) at all times. Thus, installed capacity must
exceed the maximal expected demand (most systems maintain a margin of 10% to 12%). In the long run,
the reliability of the system depends on adequate investments in new generation capacity. Investments
should keep up with demand growth and maintain reasonable reserve margins to ensure security of supply
under unexpected changes in operating conditions over extended periods of time (e.g., low level of seasonal
water inflows or an equipment failure that may keep a large power plant from generating electricity for
weeks or even months) (see Wood and Wollenberg (1996) and Kirschen and Strbac (2004)).

Recently, Cramton and Stoft (2006) and Joskow (2006a, 2006b) have argued that current competitive
wholesale electricity markets exhibit a number of market imperfections and institutional constraints that
distort incentives. In particular, they argue that price caps prevent market prices from rising to the
appropriate level when peaking technology is required to cover demand during peak hours. This depresses
the incentives for investments in new generation capacity and as a result there is underinvestment. While
the price cap in these markets is typically set at $1000 per Mwh, Joskow (2006a) suggests that a price
cap of about $4000 per Mwh would be required to recover investment costs, hence he advocates for a
substantial increase of the price caps. He also argues that a ‘value of lost load’ (VOLL) of $4000 is well
within the range of current estimates. Joskow (2006a) assumes a perfectly competitive model where the
supply curve reflects the marginal costs of the available technologies.
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In this paper, we study the problem of investment incentives in bulk power capacity in a strategic
dynamic model. Every period, capacity-constrained firms bid in the spot market for the right to generate
and sell electricity, and then invest in new capacity. Demand grows randomly. Power supply is concen-
trated in a small number of firms (in our model there are only two suppliers) that set prices strategically.
Prices are unrelated to marginal costs and usually the firms supply energy at a substantial markup. We
assume that demand is constant every period, so we ignore intraperiod variations of demand and focus
instead on the balance between total capacity and total (average) demand. We also assume a single,
constant returns-to-scale technology. Intraperiod variations of demand are less important, for example,
in a system that has a significant capacity in hydroelectric plants that can store energy and deliver it on
demand.

The thrust of our results is mostly negative. When firms behave strategically, they limit their in-
vestments to ensure that the reserve capacity is minimal at all times. Even though the firms would
like to gain market shares, unexpected investments generate excess capacity that greatly intensifies the
price competition and reduces the firms’ rents. In equilibrium, the prospect of temporal revenue losses is
unattractive and the firms are discouraged from grabbing additional market share. Therefore, the firms
are able to maintain high market prices and extract large rents.

Our model has a multiplicity of equilibria. Using intertemporal incentives, the firms can easily collude
to limit capacity investments and maintain high market prices. Our aim, however, is to adopt a ‘com-
petitive’ view while still rigorously analyzing the strategic behavior of the firms. Therefore, we restrict
attention to Markovian equilibria where these incentives are not present. For some capacity stocks, the
spot market auction also admits a multiplicity of equilibria. Here, again, we select the ‘most competitive’
equilibrium in the sense that it produces the lowest (expected) spot price. We study three equilibria that
are feasible for different ranges of the parameters of the model: risk free interest rate, price cap, demand
growth rate, and investment cost. They all share the property that when there is no initial excess capac-
ity, investment is limited so that excess capacity never exceeds the size of the largest demand increase.
Moreover, for each one of these equilibria, investments are independent of the price cap (within a range
of values). These equilibria differ in the investments required when the initial level of excess capacity is
positive. In the long run, all these equilibria maintain (almost) no excess capacity along the equilibrium
path. Hence, in our equilibria, Joskow’s (2006a) policy recommendation of increasing the price cap does
not lead to the desired result of increasing investments. Moreover, one of our equilibria has insufficient
capacity investment along the equilibrium path and rationing occurs with positive probability.

These results provide an incomplete characterization of investment equilibria, in that not all possible
parameter combinations (i.e. price cap, marginal cost, risk free interest rate, investment cost etc.) are
covered. However, these results do point to a general structure of investment equilibria for intermediate
values of the primitives: i.e. while either high markup (e.g. high price cap) or high probability of demand
growth may induce excess capacity in the short-run, the long-run implications of such excess capacity
provide enough incentives for firms to let it decrease in a non-collusive manner to a relatively low level.

In our model there are only two firms and entry is restricted. High levels of concentration and barriers
to entry are common features of electricity markets worldwide (see Sioshansi and Pfaffenberger (2006)
and Jamasb and Pollitt (2005)). Where entry is unrestricted, it would be interesting to study the effect
of price caps on entry, but our model is not equipped to do that.

In Section 6 we introduce a model of consumer willigness to pay that is consistent with the assumptions
we make on consumer demand. Assuming retail companies charge average spot prices, we find that
decreasing the price cap may have a positive impact on consumer welfare without affecting the level of
investment. The benefit here is similar to the benefit of imposing a price cap on a monopolist. As in the
standard textbook example, to maximize consumer surplus, we would like to lower the price cap to the
point where the firms make just enough profits to recover the investment costs.

Most of the literature on electricity markets has focused on strategic behavior in the short-run (see for
instance Green and Newberry (1992), Fabra et al (2006), Borenstein and Bushnell (1999) and Wolfram
(1998) among others). The subtle effects of congestion have also been studied (see Borenstein et al.
(2000) and Joskow and Tirole (2001)). However, the dynamics of investment decisions have received less
attention. This paper is a contribution towards a clearer understanding of the provision of “security of
supply” and, more broadly, how the market design affects competition and social welfare.

Section 2 presents a duopoly model of an electricity market with random demand growth and market
rules similar to those commonly in place. Section 3 analyzes the price auction game that the firms play in
each bidding cycle. In our Markovian equilibria the strategic problem of the firms in every bidding cycle
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is independent of the rest of the game. In Section 4 we exploit the homogeneity of the payoff functions in
the auction games to construct Markovian equilibria with investment decisions that are also homogeneous
of degree 1 in the current demand, and are independent of the history of the game, including the outcome
of the last auction. The structure of these equilibria simplifies the analysis enormously. In Section 5 we
construct the three equilibria and in Section 6 we study the impact of price caps on consumer welfare.
Section 6 contains our conclusions.

2 Model
In this section we introduce a simplified dynamic model of strategic investments in electricity markets.
In each period, the firms participate in a uniform price auction that specifies the market price and the
fraction of each firm’s capacity that is utilized. After the firms realize their profits for the current period,
they invest in new capacity. New capacity becomes available immediately the next period; old capacity
does not depreciate. Demand grows stochastically over time.

Assume there are 2 firms. Each firm has a constant marginal cost of production c > 0 up to its
current capacity. A price cap p̄ > c is stipulated by the regulatory commission. Denote by m = p̄− c the
maximum markup allowed by the commission. Let Kt = (Kt

1,K
t
2) be the firms’ capacities and Dt be the

inelastic demand in period t.
Firm i has ni plants (units). For simplicity (and to keep the state space of the game to a minimum

size), we assume that for all t, the total capacity Kt
i of firm i is equally divided among its plants, so each

plant has size sti = Kt
i/ni.

In the price auction, firm i submits ni bids bi = (bi1, ..., b
i
ni), where 0 ≤ bi1 ≤ · · · ≤ bini ≤ p̄. All the

plants are ordered from lowest to highest bid, with ties broken in favor of firm 1 (if b1k = b2c , then the
k-th plant of firm 1 is listed ahead the c-th plant of firm 2), and then they are dispatched in that order
until their combined capacity is greater than or equal to Dt. If the total capacity is less than or equal
to demand, that is, if K1

t + K2
t ≤ Dt, there is no marginal plant and the spot price is set equal to p̄.

Otherwise the spot price is set equal to the bid of the marginal plant.
Assume that only the first k plants are dispatched. The marginal plant is the k-th plant (the last

dispatched plant) if the combined capacity of the first k plants is strictly more than Dt, or the (k+1)-th
plant otherwise. That is, the marginal plant is that plant that would be required to cover demand if Dt

were to increase by one unit. If the last dispatched plant is the marginal plant, then it is only dispatched
for the capacity required to cover demand. Let pt be the spot price and qti be the total capacity demanded
from firm i as a result of the auction. The net revenue of firm i in period t is Rt

i = (pt − c)qti .
Variations of this auction format have been implemented in electricity markets around the world (e.g.

Norway, Colombia)1

At the end of each period t, the firms simultaneously choose capacity investments Y t
i ≥ 0, i = 1, 2. The

constant marginal cost of investment is κ > 0. Hence, firm i’s net profit for period t is πti = Rt
i − κY t

i ,
and its capacity for next period becomes Kt+1

i = Kt
i + Y t

i . Demand grows randomly: for all t ≥ 0,
Dt+1 = (1 + g)Dt with probability θ and Dt+1 = Dt with probability 1 − θ. The growth rate g > 0 is
constant over time. Firm i’s total discounted (and normalized) payoff is

(1− β)
X
t≥0

βtπti,

where β ∈ (0, 1) is the discount factor (assumed the same for both firms).
This is a dynamic game that for sufficiently high discount factor β has many (subgame perfect) equi-

libria. We restrict attention to a symmetric Markovian equilibrium where the bidding strategies and the
investment strategies of the firms depend only on the current state (Dt,K

t). Though in the component
game of period t each firm moves twice (the first time to choose a bid and the second to choose an
investment), in our Markovian equilibrium the investment decision is independent of the outcome of the
price auction. This Markovian equilibrium is extremely simple because it treats the price auction of each
period as an independent game. In general, there are collusive equilibria where relatively unaggressive
bidding (high prices) is supported by the promise of higher continuation values. In our Markovian equilib-
rium there are no intertemporal incentives for the price auction game, and therefore it must prescribe an

1See F. P. Sioshansi and W. Pfaffenberg (2006) for other examples of similar auction formats used throughout the world.
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equilibrium for the price auction game of each period. We next study the price auction game in isolation.
Once we construct an equilibrium for this game, we study the investment decision problems of the firms.

The relevant literature on dynamic investment, features the works by Spence (1979) and Fudenberg
and Tirole (1983). In the latter, firms build capacity smoothly at bounded rates over time. It is shown
that in addition to the equilibrium identified by Spence (1979) (in which firms accumulate capacity to
reach the Cournot equilibrium) there are equilibria in which the firms maintain less capacity (e.g. they
can even attain the monopoly total capacity and split the profits). Besanko and Doraszelski (2004) have
also used a similar setup to study, via numerical experiments, the relation between the nature of short-run
competition and long-run asymmetries in firm size.

3 The Price Auction Game
Assume that the current capacities are K = (K1,K2) and that current demand is D. We need to consider
5 separate cases. For most of the analysis, we consider a restricted class of symmetric strategies profiles
b, where bi1 = bi2 = · · · = bini = pi, i = 1, 2. In a symmetric strategy, firm i bids a common price pi for all
its units. To simplify, we denote a symmetric strategy profile by (p1, p2).

Case 1: K1 +K2 ≤ D. Here there is a unique equilibrium outcome. The market price is p̄, both
firms are dispatched up to their capacities (there is rationing) and the corresponding revenues are R∗ =
(mK1,mK2). Though any bidding strategy is an equilibrium, we select in this case the symmetric strategy
profile (p̄, p̄) where firm 1 and firm 2 bid all their plants at the common price p.

Case 2: Ki < D, i = 1, 2, and K1 +K2 > D. There are two symmetric pure strategy equilibria and
a continuum of symmetric mixed strategy equilibria.2 The pure strategy equilibria are (p1, p2) = (c, p)
and (p1, p2) = (p, c), with corresponding revenues R = (mK1,m(D −K1)) and R = (m(D −K2),mK2)
respectively. In any symmetric mixed-strategy equilibrium, each firm i chooses pi randomly in the interval
[c, p] according to a distribution Φi. It is easy to argue that in the interval [c, p), Φi is absolutely continuous
with a density ϕi. However, it is possible that either Φ1 or Φ2, but not both, has a jump at p̄. Let
ϕ̄i = Φi(p̄)− limp↑p̄ Φi(p) = 1− limp↑p̄ Φi(p). Then ϕ̄i ≥ 0, i = 1, 2, and ϕ̄1ϕ̄2 = 0. The expected revenue
for firm 1 when it bids a price p1 ∈ [c, p) is

K1

∙Z p

p1

(p2 − c)ϕ2(p2)dp2 + (p̄− c)ϕ̄2

¸
+ (D −K2)(p1 − c)Φ2(p1).

Since firm 1 is randomizing, it must be that this expected revenue does not depend on p1, and therefore
the derivative of the above expression with respect to p1 must be 0 for all p1 ∈ (c, p):

−K1(p1 − c)ϕ2(p1) + (D −K2)Φ2(p1) + (D −K2)(p1 − c)ϕ2(p1) = 0.

Simplifying, we obtain ϕ2(p) = AΦ2(p)/[p− c], where A = [D−K2]/[K1 +K2 −D]. The solution of this
differential equation with boundary condition limp↑p̄ Φ2(p) = 1− ϕ̄2 is

Φ2(p) = (1− ϕ̄2)
hp− c

m

iA
and ϕ2(p) = (1− ϕ̄2)

A

mA
[p− c]A−1 for all p ∈ [c, p̄).

The strategy for firm 1 is symmetrically constructed. The corresponding revenues are R = (m[(1 −
ϕ̄2)(D−K2)+ ϕ̄2K1],m[(1− ϕ̄1)(D−K1)+ ϕ̄1K2]). The probabilities (ϕ̄1, ϕ̄1) satisfy ϕ̄i ∈ [0, 1), i = 1, 2,
and ϕ̄1ϕ̄2 = 0. Since K1 +K2 > D, the ‘most competitive’ equilibrium, that is the equilibrium with the
lowest revenues for the firms, corresponds to the case ϕ̄1 = ϕ̄2 = 0 with R∗ = (m(D−K2),m(D−K1)).

Given the other firm plays its symmetric mixed strategy, our derivation above makes sure that firm i
is indifferent about which common price to bid for all its units. However, we also need to check that other
asymmetric strategies are not more profitable. To simplify the notation, let us consider just an example.
Suppose that D = 5.5, K1 = K2 = 4, and that firm 1’s bid b1 translates into capacities of 1 being bid at
price qc, c = 1, . . . , 4, where c ≤ q1 < q2 < q3 < q4 < p̄. Firm 1’s expected net revenue for this strategy is

1.5(q2 − c)Φ2(q2) + 2

Z q3

q2

(p2 − c)ϕ2(p2)dp2 + 3

Z q4

q3

(p2 − c)ϕ2(p2)dp2 + 4

Z p̄

q4

(p2 − c)ϕ2(p2)dp2.

2 See Fabra et al. (2006) for a complete derivation.
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Note that whether p2 ∈ [c, q1) or p2 ∈ [q1, q2), firm 1 dispatches a total capacity of 1.5 and the spot price
is q2. So firm 1 might as well choose to bid a capacity of 2 at the common price q2. Clearly, this expected
revenue is smaller than

1.5(q2 − c)Φ2(q2) + 4

Z p̄

q2

(p2 − c)ϕ2(p2)dp2,

which firm 1 could attain if instead it bid all its capacity at the common price q2. Therefore, there are
no profitable asymmetric deviations. Though the example is particular, the argument is clearly general
and would apply to any D, (K1,K2) ∈ (0,D)2 with K1 +K2 > D, and any b1.

Cases 3—4: Ki ≥ D and Kj ≤ D. In this case, there is also a continuum of symmetric equilibria:
(pi, pj) = (p̄, pj) with pj ∈ [c, c +m(D −Kj)/D], all leading to the same revenues (R∗i , R

∗
j ) = (m(D −

Kj),mKj). When Kj < D, these are the only pure strategy equilibria,3 but when Kj = D, for any
pi ∈ [c, p̄], (pi, c) is also an equilibrium. When K = (D,D), there is a continuum of symmetric equilibria:
p = (c, p2) and p = (p1, c) are equilibria for all p1, p2 ∈ [c, p̄].

When D is an integer multiple of the plant capacity si = Ki/ni, that is when D = c∗si for some
positive integer c∗, there is a “fragile” asymmetric equilibrium that gives all the revenue to firm i. In that
equilibrium, bic = c for c ≤ c∗ and bic = p̄ for c > c∗, while bjc = p̄ for all c. This is an equilibrium because
of the definition of the spot price. In this equilibrium, the marginal plant is not being dispatched, but
it determines the spot price. When D is not an integer multiple of si, this equilibrium does not exist.
Of course, since firm i chooses its investments, it can do so in such a way that D is always an integer
multiple of si. This is possible for the simple model of demand growth we adopted, but would not be
possible for a more realistic model. If demand growth were a continuum random variable (with mean
gD), for example, then firm i would never be able to predict D exactly.

Case 5: Ki ≥ D for i = 1, 2. In this case, each firm can cover the whole demand with its own capacity,
and the standard Bertrand outcome attains, (p1, p2) = (c, c), and the firms make no profits: R∗ = (0, 0).

3.1 Equilibrium Selection
Multiplicity of equilibria is a pervasive feature of capacity constrained Bertrand models of price competi-
tion. Different equilibrium selection criteria are likely to induce discontinuous equilibrium payoffs. As dis-
cussed above, the price auction game features a continuum of equilibria in case 2. Here, we select the “most
competitive” bidding equilibrium. Under the symmetric mixed equilibrium, the expected price markup
(and hence consumer surplus) depends on the joint excess capacity. Let E = K1 +K2 −D denote excess
capacity and a = D/E−1. By assumption, 0 < E ≤ D. Then, Prob[pt ≤ p] = Φ1(p)Φ2(p) = [(p−c)/m]a.
Therefore, the expected price in the mixed-strategy equilibrium is

p̂ =

Z p̄

c

pa
(p− c)a−1

ma
dp = (p− c)

∙
1− E

D

¸
+ c.

As E → 0, p̂→ p̄, and when E = D, p̂ = c.
Having selected the mixed, symmetric equilibrium for case 2, we make sure the investment incentives

are “smooth” with respect to changes in installed capacity. For example, if firm 1 adds capacity so that
we move from case 2 to case 3, we would select the equilibrium that features continuity in expected payoffs
for firm 1 along this transition. Following this rationale, when Ki ≥ D and Kj ≤ D (i.e. cases 3 and
4) we select the equilibrium (pi, pj) = (p̄, c). Similarly, when Kj = D and Ki > D, we select again the
equilibrium (pi, pj) = (p̄, c) with net revenues (R∗i , R

∗
j ) = (0,mD) to ensure that the net revenue function

R∗j has the appropriate continuity ‘from below’.
Finally, when K = (D,D), in the dynamic investment game (described in the next section), we will

need to select one of the three equilibria p = (c, p̄), p = (p̄, c), or (c, c), depending on the investments
made by the firms in the previous period.4

3There are other (asymmetric) mixed strategy equilibria, where firm j chooses randomly for each of its units a price bjk ∈
[c, c+m(D −Kj)/D], but they all have the same net revenues (R∗i , R

∗
j ) = (m(D −Kj),mKj).

4 Strictly speaking, our Markovian equilibria require a larger state vector that includes (Dt−1,Kt−1) in addition to (Dt,Kt).
However, remembering (Dt−1,Kt−1) is only required when Kt = (Dt,Dt) and in our analysis we are able to deal with this case
by using the relevant continuation values.
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To summarize, partition the capacity space R2
+ minus the point (D,D) into 5 regions:

S1 = {K | K1 +K2 ≤ D, and Ki ≥ 0 for i = 1, 2},
S2 = {K | K1 +K2 > D, and Ki < D for i = 1, 2},
S3 = [D,∞)× [0,D]\{(D,D)},
S4 = [0,D]× [D,∞)\{(D,D)},
S5 = (D,∞)× (D,∞).

Then, the revenue function for the players and corresponding equilibrium strategy we have selected
are

R∗(K,D) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(mK1,mK2) K ∈ S1 with (p̄, p̄)
(m(D −K2),m(D −K1)) K ∈ S2 with (ϕ1, ϕ2)
(m(D −K2),mK2) K ∈ S3 with (p̄, c)
(mK1,m(D −K1)) K ∈ S4 with (c, p̄)
(mD, 0); (0,mD) or (0; 0) K = (D,D) with (c, p); (p, c) or (c, c)
(0, 0) K ∈ S5 with (c, c)

4 The Dynamic Investment Game
We now assume that the firms’ behavior at the auction games is fixed at the bidding equilibrium strategies
selected in the previous section. Fixing the behavior of the firms at the auctions produces a residual
dynamic game where the firms only choose investments. Note that the equilibrium revenue function
R∗(K,D) is homogeneous of degree 1; let r∗(K) = R∗(K, 1), so R∗(K,D) = D · r∗(K/D). We restrict
attention to investment strategies where the decisions of the firms in period t depend exclusively on the
current capital stock Kt and demand Dt. Let Y (Kt, Dt) = (Y1(K

t,Dt), Y2(K
t,Dt)) denote the profile of

capacity investments in period t. Moreover, to transform the dynamic game into a stationary game, we
will also require that Y (Kt,Dt) be homogeneous of degree 1. Let y(K) = Y (K, 1) denote the investment
when the current demand is 1. Then, we assume that Y (K,D) = D · y(K/D).

Starting from K0, let {Kt}t≥0 be the (stochastic) sequence of capacity stocks when the firms follow
the strategy Y . That is, for each t ≥ 0, Kt+1

i = Kt
i + Yi(K

t,Dt). Define the “detrended” capacity
stock (stochastic) sequence {kt}t≥0 by kti = Kt

i/Dt for all i and t ≥ 0. Then, for each i and t ≥ 0,
kt+1i = [kti + yi(k

t)]/[1 + g] with probability θ, and kt+1i = kti + yi(k
t) with probability 1− θ.

Let V (K|Y,D0) denote the total expected discounted payoff of the firms when the initial capital
stock is K0 = K, given that the firms follow the investment strategy Y and that the demand in the
initial period is D0. Observe that by homogeneity, V (K|Y,D0) = D0V (K/D0|Y, 1), and without loss of
generality it is enough to study the case when initial demand is D0 = 1.

Let vi(k| y) = Vi(k|Y, 1), i = 1, 2, and note that

vi(k| y) = [r∗i (k)− κyi(k)] + β

∙
θ(1 + g)vi

µ
k + y(k)

1 + g

¯̄̄̄
y

¶
+ (1− θ)vi(k + y(k)| y)

¸
.

This identity suggests an interpretation of our model in terms of a “stationary” model. Formally, for
homogeneous investment strategies, our model is equivalent to a model with a stationary demand of 1
and random discount rate and capital depreciation. Let δ be such 1− δ = [1+ g]−1. Then, the (discount
rate, capital depreciation) pair is (β(1 + g), δ), with probability θ and (β, 0) with probability 1− θ.

Definition: Let γ = β(1 + θg) denote the expected discount rate. We shall assume γ < 1 or
equivalently, θg < ρ. Also, let ρ be the interest rate, so that β = [1 + ρ]−1.

In the analysis that follows, we find it easier to work with the stationary model. The following
definition implicitly uses the principle of unimprovability.

Definition: An investment function y∗ is a subgame perfect equilibrium of the stationary investment
game if for all k, i and ŷ = (xi, y

∗
−i(k)) with xi ≥ 0,

vi(k| y∗) ≥ [r∗i (k)− κxi] + β

∙
θ(1 + g)vi

µ
k + ŷ

1 + g

¯̄̄̄
y∗
¶
+ (1− θ)vi(k + ŷ| y∗)

¸
.

One can easily check that: (1) If y∗ is a subgame perfect equilibrium of the stationary investment game,
then the corresponding homogeneous strategy Y ∗ is a subgame perfect equilibrium of the investment game

6



(with stochastic demand growth). (2) The full strategy obtained by combining an equilibrium strategy
Y ∗ of the dynamic investment game and the equilibrium strategies of the auction games (specified in
Section 3) constitutes a subgame perfect equilibrium of the full dynamic game.

An equilibrium strategy Y ∗ constructed from an equilibrium strategy y∗ of the stationary game is
by definition homogeneous of degree 1. However, the investment game may also have non-homogeneous
equilibrium strategies. Though homogeneous equilibrium strategies are intuitively appealing, our focus
on homogeneous equilibrium strategies is motivated by their simplicity.

Remark: We can now explain our choice of bidding strategies (and consequently, our definition of
R∗(K, 1)) when K1 = 1 and K2 > 1 (or when K1 > 1 and K2 = 1). As we discussed in Section 3, there are
multiple bidding equilibria in this case. However, to guarantee existence of Markovian equilibrium in the
dynamic game, it is necessary to select the symmetric bidding equilibrium (c, p̄). We now argue this point
informally. Assume for simplicity that θ = 1, so demand grows by (1 + g) every period. The equilibrium
revenue function r∗(k) is discontinuous at any k = (1, k2) with k2 > 1. This generates a discontinuous
objective function for the firm’s investment problem. Consider a situation where k02 > 1+g and k

0
1 < 1+g.

Here, even if firm 2 makes no investment, k12 = k02/(1 + g) > 1 and firm 1 can induce revenues r∗(k1)
in period 1 arbitrarily close to (m, 0) by choosing an investment so that k11 is just below 1. (Recall that
when k11 < 1 < k12 , there is a unique bidding equilibrium with revenues (mk11,m(1− k11)).) When we set
r∗(1, k12) = (m, 0), as we did in the definition of the revenue function, firm 1 can optimally choose k11 = 1.
But, suppose for a moment that r∗(1, k12) = (0, 0), as it would be if the symmetric bidding equilibrium
at (1, k12) were (c, c) instead, and assume that v1(k

2
¯̄
y∗) is continuous in k2 (in a neighborhood of the

relevant k2). Then, firm 1’s investment decision problem in period 0 would have an objective function that
is not left-continuous, and hence has no solution (firm 1 would like to maximize its investment subject
to k11 < 1). Also, when kt+1 = (1, 1), what equilibrium and revenues are selected should depend on the
investments made in period t. If, for example, firm 1 made a positive investment while firm 2 made no
investment, then we need to set r∗(kt+1) = (m, 0) because by decreasing its investment in period t, firm
1 can guarantee revenues arbitrarily close to (m, 0) in period t + 1. On the other hand, if kt+1 = (1, 1)
and both firms made positive investments the previous period, then we set r∗(kt+1) = (0, 0). Thus, we
need to enlarge the state space for our Markovian strategies, and when the capital stock visits the point
(1, 1), we need to recall what investments were made in the previous period. But, as long as we make r∗

left-continuous at the boundary {1} × (1,∞) ∪ (0, 1)× {1}, we do not need to recall the last investment
for any other stock. To keep the definition of the Markovian strategy as simple as possible, we prefer
to allow the use of memory only for the state (1, 1) (where it is unavoidable). Also, letting the strategy
depend on the previous investments and the current capacity stock everywhere, allows the design of some
collusive strategies that we would like to exclude.

5 Investment Equilibrium
In this section we refer exclusively to the stationary game. We are interested in two types of investment
equilibria, one where total capacity is at leat equal to demand in every period with probability 1, and
another where with positive probability capacity is insufficient and there is rationing.

In our equilibria, if initially there is no excess capacity, the firms keep the capacity stock in the region
S1 all the time. In that region, a firm’s revenue increases with its market share. Therefore the firms
would like to increase their market shares. But, excess capacity has a negative impact on the spot price,
and thus investing too much in an attempt to grab market share is not immediately rewarding. Moreover,
when an overinvestment sends the capacity stock to the region S2, a firm’s revenue does not depend on
its own capacity. Nevertheless, a firm may expect to profit from an unexpected overinvestment in future
periods, when excess capacity disappears with demand growth, if the opponent does not react and allows
the firm to increase its market share. In the Markovian equilibrium of Theorem 1 below, for example,
the opponent does not react: the firms make no investments in region A (that corresponds to a main
portion of S2) and allow demand to catch up with capacity. However, market grabbing is dampened by
this process and in the end it is too costly to increase the market share. For similar reasons, it is not easy
to construct (Markovian) equilibria that maintain excess capacity over time. Nevertheless, in Theorem 3
below we present an equilibrium with this property. If initially there is excess capacity, that equilibrium
generates a symmetric trajectory for the capacity stock that has excess capacity in every period.
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5.1 An Equilibrium with Security of Supply
We first present an investment strategy that in every period produces an aggregate investment equal to the
size of a potential demand growth. Since investment decisions are made before the realization of demand
growth, along the outcome path of this equilibrium, there will be periods (when demand does not grow)
where total capacity strictly exceeds demand. Thus, this strategy ensures that demand is always served
and keeps overcapacity to a minimum. We identify conditions for this strategy to be an equilibrium. As
we shall see below, this is indeed the case for a wide range of parameters, including cases in which the
probability of demand growth is relatively small. When that probability is small, investments are likely
to produce overcapacity and therefore they do not seem attractive. However, a firm that does not invest,
as required by the strategy, loses market share and therefore concedes to its opponent future rents that
it could have collected itself.

Let N = {0, 1, . . .}. Define the regions

U = {k ≥ 0 | 1 > k2 > k1/g and k2 > k1 + (1− g)/(1 + g)},
W = {k ≥ 0 | 1 > k1 > k2/g and k1 > k2 + (1− g)/(1 + g)},
L = {(1, 1) > k ≥ 0 | k1 + k2 < 1 + g}\{U ∪W},
A = {(1, 1) > k | k1 + k2 ≥ 1 + g},
Ir = [0, 1 + g]× [(1 + g)r, (1 + g)r+1] for r ∈N,

and I = ∪r≥0Ir = [0, 1 + g]× [1,∞). Figure 1 displays these regions as well as two trajectories that we
discuss later.

We now define a symmetric strategy profile y∗ with the property that along its (stochastic) outcome
path, detrended capacity is eventually trapped in the region L. Moreover, in the long run, the firms
converge to a situation where they share the market equally and have the same capacity. The structure
of the strategy is relatively simple, though its formal description requires a decomposition into many
regions.

1+g
1

1+g
g

1-g
1+g

2(1+g)

2(1+g)

2k

k 11

1

W

A

I

I

U

L

1

0

1+g

1+g

g

Figure 1: Regions and Trajectories for y∗

In region L, the firms have insufficient capacity to cover a possible demand growth. Here they are
required to invest equally to bring the total capacity up to 1 + g. If demand grows next period, the
firms are able to extract monopoly rents, and if demand does not grow, the excess capacity next period
is g (a relatively small amount) and the firms are able to extract close to monopoly rents anyway. In
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region A and in (1 + g,∞)× (1 + g,∞), the firms make no investments, letting demand gradually catch
up with the total capacity. Regions U and W play a special role and their odd geometry is dictated by
the contraction of the detrended stock vector when demand grows. In region U (region W ) only firm 1
(firm 2) makes an investment. The investment brings total capacity up to 1 + g, so that the detrended
capacity stock falls into L if demand grows, and stays in A otherwise. When firm 2 has overcapacity
(i.e., can cover the whole demand by itself) while firm 1 has insufficient capacity (region I), y∗ lets firm
1 ‘exploit its monopoly power’. In region I, firm 2 ‘waits’ until its detrended capacity falls below 1 (i.e.,
until demand increases above its current capacity). Meanwhile, ideally, firm 1 wants to increase capacity
to exactly meet demand every period. Since demand growth is random, it might be optimal to invest
only enough to cover current demand (especially if θ is relatively low). But if the overcapacity of firm 2
is small, firm 1 may find it optimal to invest even less. The reason is that when firm 2’s overcapacity is
small, it may take just a few periods for demand to grow enough so that the detrended stock falls in the
square [0, 1]× [0, 1] and firm 2 starts competing for market share again. Moreover, while the stock k is in
region A, firm 1’s profit is m(1− k2), independent of k1, and the larger is k1, the longer it takes for the
stock to fall into the region L. Therefore, when firm 2’s overcapacity is small, an expensive investment for
firm 1 is only profitable for a few periods, and firm 1 makes only a small investment to partially exploit
its market power now without increasing too much the number of periods the stock stays in region A. In
the proof of Theorem 1 below we will find an integer r̄ ≥ 0 and construct two functions τ∗ : N→ {0, 1}
and τ̂ : {0, 1, . . . , r̄ − 1}→N such that

(i) τ∗ is weakly increasing.
(ii) τ̂(r + 1) ≥ τ̂(r) + 1 for all 0 ≤ r < r̄ − 1.
When k ∈ Ir and r ≥ r̄, firm 1 makes a ‘full investment’ equal to (1+ g)τ

∗(r)−k1, so that its capacity
increases to (1 + g)τ

∗(r). Since τ∗(r) is either 0 or 1, a full investment makes firm 1’s detrended capacity
equal to 1 or 1 + g. If k ∈ Ir and 0 ≤ r < r̄, firm 1 makes a ‘partial investment’ of no more than
(1 + g)τ̂(r) − k1 − k2. In no case will firm 1 invest more than (1 + g)τ

∗(r) − k1, and there might be cases
where (1 + g)τ̂(r) − k1 − k2 > (1 + g)τ

∗(r) − k1. Hence, the partial investment is in general defined by

ȳ1(k) = min {(1 + g)τ̂(r) − k1 − k2, (1 + g)τ
∗(r) − k1}

For each k = (k1, k2) ≥ 0 let

y∗1(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 [1 + g − k1 − k2] k ∈ L
1 + g − k1 − k2 k ∈ U

ȳ1(k) k ∈ Ir, k1 + k2 < (1 + g)τ̂(r) and 0 ≤ r < r̄

(1 + g)τ
∗(r) − k1 k ∈ Ir, k1 < (1 + g)τ

∗(r) and r ≥ r̄
0 in all other cases

(1)

and y∗2(k) = y∗1(k2, k1).
Note that when k ∈ [0, 1]2 this strategy prescribes positive investments only if aggregate capacity

is insufficient to cover a possible demand growth, that is, only if k1 + k2 < 1 + g, and then aggregate
investment is exactly 1 + g − k1 − k2.

Figure 1 above shows two (random) trajectories generated by y∗, one starting in the region I0 and the
other in the region L. In the first period of the trajectory that starts in I0, firm 2 makes no investment
and firm 1 invest so that k1 + k2 = (1 + g)2. That is, in this example, r̄ ≥ 1 and τ̂(0) = 2. The state
remains at (k1, k2) for a random number of periods until demand grows. When demand grows, the state
moves to a state k0, where k0i = ki/(1+g), so k01+k02 = 1+g. Again, the state remains at k0 for a random
number of periods until the next demand expansion, when it moves to a state k00, where k001 + k002 = 1.
The state remains at k00 for only one period. At the end of that period each firm invests g/2, so that
(k001 + g/2) + (k002 + g/2) = 1 + g. And so on.

Definition: Let B = [1 − β(1 − θ)]−1 and η = Bβθ, and define the functions (B and η are also
functions of θ):

ψ(θ) =
1

η
and φ(θ) =

2− β

θ(2− β) + (1− θ)β
.

Note that 0 < η < 1 for any θ ∈ [0, 1]. Also recall that ρ = [1− β]/β.

Theorem 1. If ρφ(θ) < m/κ < ρψ(θ), the strategy y∗(k) is an MPE.
Proof: See the Appendix.
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In the proof of Theorem 1 (in the Appendix), we explicitly derive the equilibrium value associated
with each starting capital stock k. When k ∈ L, the equilibrium value for firm 1 increases with the
difference k1 − k2 (see equation (4)). The upper bound on m/κ ensures that the temptation to increase
this difference and become more dominant is less than the investment cost. On the other hand, firm 1
may be tempted to underinvest and save some investment cost. However, such a move allows firm 2 to
increase its size (relative to firm 1) in future periods, and that hurts the continuation value of firm 1 for
the same reason. The lower bound on m/κ guarantees that the savings in investment cost is less than
the future losses. The equilibrium value function is piecewise linear, and the marginal value for firm 1 of
overinvesting is strictly less than that of underinvesting. That is the reason there is a range of values for
m/κ for which the firms have the proper incentives to make the investments prescribed by y∗.

Note that ψ(θ) > φ(θ) ≥ 1 and both are strictly decreasing in θ. When θ = 1, B = 1, η = β, and
ψ(1) = φ(1) = 1. Therefore, when θ = 1, Theorem 1 holds for m/κ ∈ [ρ, ρ/β] = [ρ, ρ(1 + ρ)]. The
upper bound for m/κ is very restrictive in this case. When demand grows with small probability (e.g.
for low values of θ), the range of admissible values for m/κ expands considerably. As θ ↓ 0, y∗(k) is an
equilibrium for any m/κ > ρ[2 − β]/β = ρ(1 + 2ρ). For low values of θ, when k ∈ L, firm 1 (or firm 2)
has little incentive to invest beyond y∗1(k) and arrive at a capital stock k0 with excess capacity (that is,
where k01 + k02 > 1). At such stock, firm 1’s net revenue is m(1− k02), independent of k

0
1, and it may take

a long time before demand catches up with the total installed capacity.
Recall that for any initial capital stock, the stochastic detrended capacity stock trajectory generated

by y∗ is eventually trapped in the region L. When the firms follow y∗, if kt ∈ L, in period t + 1 with
probability θ there is no excess capacity (that is kt+11 + kt+12 ≤ 1), and with probability 1 − θ there
is detrended excess capacity equal to g. Therefore, in the long-run, the average of (K1

t + K2
t )/Dt is

E∗ = (1− θ)g > 0. That is, E∗ is the average fraction (with respect to demand) of excess capacity.

5.2 An Equilibrium without Security of Supply
For relatively low values for the probability of growth, the firms can do better than in the equilibrium
analyzed in the previous section. When capacity matches current demand and demand growth is very
unlikely, investments are very likely to produce excess capacity. In this section, we study a strategy where
the firms take a “conservative” approach to investing. Instead of guaranteeing that the demand growth
is always covered, joint investment will now only be enough to cover current demand levels. As a result,
this strategy will produce periodic (stochastic) rationing. Again, we identify sufficient conditions on the
primitives of the model for this strategy to form an equilibrium. As we shall see in Theorem 2 below,
this strategy is not an equilibrium when both the probability of demand growth and the ratio m/κ are
relatively high. However, for low values of the probability of demand growth, this strategy is indeed an
equilibrium for a wide range of values for m/κ.

The strategy is defined as follows:

ŷ1(k) =

⎧⎪⎪⎨⎪⎪⎩
1
2
[1− k1 − k2] k1 + k2 ≤ 1

ȳ1(k) k ∈ Ir, k1 + k2 < (1 + g)τ̂(r) and 0 ≤ r < r̄

(1 + g)τ
∗(r) − k1 k ∈ Ir, k1 < (1 + g)τ

∗(r) and r ≥ r̄
0 in all other cases

(2)

This strategy differs from y∗ in an important way. When k ∈ [0, 1) × [0, 1) and k1 + k2 < 1 + g,
y∗1(k) + y∗2(k) = 1+ g− k1 − k2, guaranteeing that demand is fully covered the next period. By contrast,
when k1 + k2 < 1, ŷ1(k) + ŷ2(k) = 1 − k1 − k2, and when 1 ≤ k1 + k2 < 1 + g, ŷ(k) = 0. Therefore, if
demand grows, the capacity is insufficient the next period and there is rationing. For a given ratio m/κ,
the strategy ŷ is an equilibrium when the probability θ of demand growth is relatively low.

Theorem 2. The strategy ŷ(k) is an MPE when

2− η

η

1− β

2− β
>

m

κ
≥ 1− β

β
= ρ.

Proof: See the Appendix.

When the firms follow the strategy ŷ, it is easy to see that in the long run, in every period, with
probability θ there is rationing and with probability 1− θ installed capacity matches demand. Therefore,
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Figure 2: Upper and lower bounds for y∗ and ŷ

in the long-run, the average of (Dt − Kt
1 − Kt

2)/Dt is Ê = θg/(1 + g). That is, 1 − Ê is the average
fraction of covered demand.

Note that as θ → 1, η → β and the feasible interval form/κ shrinks to the singleton {ρ}. The intuition
is clear: as θ increases, a demand growth is more likely, and each firm becomes tempted to increase its
investments by g (so that total capacity increses to 1 + g) to capture additional rents in the next (and
future) period(s). For relatively low values of θ, both strategy profiles y∗ and ŷ are MPE for a wide-range
of values for m/κ (see Figure 2).

5.3 Deterministic Demand Growth
In this section, we demonstrate that even when the probability of demand growth is high, there are
equilibria like that of Theorem 1 that sustain no excess capacity (in the long run). When θ = 1, the range
of values for m/κ for which ŷ is an MPE is empty. Also, when m/κ > ρ + ρ2, y∗ is no longer an MPE
because the firms have an incentive to overinvest when k1+k2 ≤ 1. The reason for this breakdown is that
the continuation values for y∗ (for ŷ) when the current capital stock k ∈ [0, 1]2 is such that k1+k2 > 1+g
(k1 + k2 > 1) are too attractive.

We next modify the strategy of Theorem 1 to decrease the firms’ payoffs when the initial state k0 ∈
(0, 1+g]2 is such that k01+k02 > 1. When there is overcapacity, that strategy requires that the firms make
no investments to allow the demand to catch up with the installed capacity. Now, instead, we require
the firms to maintain overcapacity in every period and the stock trajectory remains trapped in the region
where kt1 + kt2 > 1 for all t ≥ 1. For any such initial stock k0 that is asymmetric, that is k01 6= k02 , each
firm increases its capacity to almost 1 + g. Thereafter, the firms allow the stock to slowly decrease to
the state ( 1

2
(1 + g), 1

2
(1 + g)). More precisely, kt1 = kt2 > kt+11 = kt+12 for all t ≥ 1 and kti → 1

2
(1 + g).

This modified strategy relaxes the temptation to overinvest and is an MPE when θ = 1 for relatively high
values of m/κ.

For � > 0, let

L = {(k1, k2) | k1 + k2 ≤ 1} ∪ {(k, k) | 12 < k ≤ 1
2
(1 + g)}

M = {(k, k) | 1
2
(1 + g) < k ≤ 1}

A(�) = {(k1, k2) | k1 + k2 > 1 and �(1 + g) < ki ≤ (1− �)(1 + g), i = 1, 2}
U(�) = {(k1, k2) | k1 + k2 > 1, 0 < k1 ≤ �(1 + g), and 0 < k2 < 1 + g}
W (�) = {(k1, k2) | k1 + k2 > 1, 0 < k2 ≤ �(1 + g), and 0 < k1 < 1 + g},
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and define A◦(0) = int (A(0)). Clearly, for 0 < �1 < �2 < (1 + 2g)/(2 + 2g), A◦(0) ⊃ A(�1) ⊃ A(�2) 6= ∅.
For �̄ > 0 is to be determined later, define the function � : A◦(0)→ (0, 1), as follows:

�(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̄ k ∈ A(�̄)

k1
2(1+g)

k ∈ U(�̄)
k2

2(1+g) k ∈W (�̄)

1− max{k1,k2}
1+g k ∈ A◦(0)\[A(�̄) ∪ U(�̄) ∪W (�̄)]

We now consider the strategy:

y∗1(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2
[1 + g − k1 − k2] k ∈ L

1
2 (1− �(k))(1 + g)− k1 k ∈ A◦(0)\{ (k, k)| 1

2 < k ≤ 1}
1
2
g(1 + g) k ∈M
(1 + g)− k1 k1 < 1 + g and k2 ≥ 1 + g
0 in all other cases

The strategy in Theorem 1 adjusts total capacity to exactly meet demand next period whenever
k1+k2 ≤ 1+ g. The current strategy does the same in the smaller region L (line 1). When k ∈ A◦(0)\M
and k1 6= k2, the firms invest so their capacities next period equal are (1 − �(k), 1 − �(k)) (line 2). The
idea here is that next period the firms enjoy revenues close to 0. The larger is the capacity of each firm,
the smaller are the revenues, and so we would like to make their capacities equal to 1. However, because
the revenue function is discontinuous at the boundary {1} × [0, 1]∪ [0, 1]×{1}, asking the firms to bring
their capacity stock to exactly (1, 1) is not feasible: each firm would then have a strong incentive not to
invest at all. Indeed, if a firm expects the opponents capacity to be 1 next period, then it wants to keep
its own capacity strictly below 1 so it can extract monopoly rents next period. Thus, y∗ requires instead
that each firm brings its capacity to 1 − �(k) next period. The function �(k) is constructed so that for
k ∈ A◦(0): (i) �(k) ≤ �̄; (ii) there exist nonnegative investments that make tomorrow’s capital stock equal
to (1 − �(k), 1 − �(k)); and (iii) even if only one firm follows the investment strategy y∗while the other
makes no investment, the total capacity next period exceeds 1. When k ∈ A(�̄), since ki ≤ (1− �̄)(1+ g),
i = 1, 2, to make tomorrow’s capital stock equal to (1− �̄, 1− �̄), each firm needs to make a nonnegative
investment today. And since ki > �̄(1 + g), i = 1, 2, if firm 1 makes no investment and firm 2 follows y∗,
tomorrow’s total capacity is 1 − �̄ + k1/(1 + g) > 1. When k ∈ U(�̄), �(k) = k1/[2(1 + g)] ≤ �̄/2. Also,
if firm 1 makes no investment and firm 2 follows y∗, tomorrow’s total capacity is 1 + k1/[2(1 + g)] > 1.
Note that when k1 = 0, the strict inequality does not attain.5 When firm 2 makes no investment
and firm 1 follows y∗, the total capacity is even more. The situation is similar in the region W (�̄).
Finally, let k ∈ A◦(0)\[A(�̄) ∪ U(�̄) ∪W (�̄)]. For example, assume that (1 − �̄)(1 + g) < k2 < 1 + gand
�̄(1+ g) < k1 ≤ (1− �̄)(1+ g). Then, �(k) = 1− k2/(1+ g) < �̄, and the capital stock (1− �(k), 1− �(k))is
reached when firm 1 makes a positive investment and firm 2 makes no investment. Also, when firm 1 makes
no investment while firm 2 follows y∗, tomorrow’s total capacity is 1− �(k) + k1/(1 + g) > 1− �̄+ �̄ = 1.

When (k1, k2) ∈M , the firms let their detrended capacity fall ‘slowly’ towards the symmetric capacity
stock ( 1

2
(1+ g), 1

2
(1 + g))(line 3). This feature of the strategy is remarkable in that along this symmetric

capacity stock trajectory, the firms maintain excess capacity in every period. Consequently, this trajectory
has a relatively low total payoff for the firms. Finally, in the region where k1 < 1 + g and k2 ≥ 1 + g,
firm 2 makes no investment (line 5) and firm 1 invests to get its capacity equal to 1 and enjoys monopoly
profits next period (line 4).

Theorem 3. Assume that θ = 1, k0 > (0, 0), β > 1
2 and

m

κ
> ρ

∙
2ρ

g(1− g)
− 1

¸
.

Then there exists �̄ > 0such that the strategy y∗is a Markov perfect equilibrium.

Proof : See the Appendix.

Our main motivation to construct the equilibrium y∗of Theorem 3 was to demonstrate that even
when the probability of demand growth is high, there are equilibria like that of Theorem 1 that sustain

5To avoid this possibility, in Theorem 3 below we assume that k0 > (0, 0), so that kt > (0, 0) for all t ≥ 1 and for any
investment strategy.
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no excess capacity (in the long run). In fact, in the equilibrium of Theorem 3, what happens in the long
run depends on the initial capacity stock k0. When k01 + k02 ≤ 1, total capacity matches demand in every
period along the equilibrium path. But when k01+k02 > 1, k

tapproaches in the long run the capacity stock
( 1
2 (1 + g), 12 (1 + g)), and excess capacity exceeds gall the time. As we discussed in the previous section,
maintaining excess capacity is wasteful, but also reduces spot prices and increases consumer surplus.

6 Welfare Comparison
We now study the welfare properties of our equilibria. For a proper welfare analysis, we need information
about the consumers’ willingness to pay.We have made the assumption that demand is perfectly inelastic.
This assumption implicitly captures the consumers’ reaction to the indirect market mechanisms in place.In
many electricity markets,(see Siohanshi and Pfaffenberger(2006)) wholesale retailers are not allowed or
are simply not capable of charging real-time spot prices to the consumers. Typically, regulated retail
prices reflect the procurement costs incurred by retailers. Thus, the demand function we have assumed
does not properly capture the consumers’ willingness to pay — demand is assumed to be inelastic precisely
because while spot prices are changing, the consumer prices have been set ahead of time. To estimate
a demand function that accurately represents the consumers’ marginal willingness to pay is a delicate
exercise (see, for example,Goett et al. (1988)).For our purposes, however, it will suffice to assume that
the marginal willingness to pay is a decreasing function of the quantity consumed. For simplicity, we
now assume that the marginal willingness to pay function is given by p = P − σq, where qis the quantity
consumed, and Pand σare two positive constants. The slope σdecreases randomly over time. If σtis the
slope of the marginal willingness to pay function in period t, then in period t+ 1, σt+1 = σt/(1 + g)with
probability θand σt+1 = σtwith probability 1 − θ. Without loss of generality we normalize variables so
that σ0 = 1.

In what follows we shall assume that retailers buy electricity from the producers at the spot price and
sell it to the consumers at a previously contracted price prt . Thus, (short-run) demand is independent of
the spot price; the quantity demanded is Dt = [P − prt ]/σt. In the long-run, p

r
t is set equal to the average

spot price (so retailers make 0 profits). Similar forms of retail regulation are used in many electricity
markets around the world (see Siohanshi and Pfaffenberger (2006)).

In the previous sections we multiply quantities and capacities in period t by the factor D0/Dtto
obtain detrended variables. We also normalized D0 = 1. But the magnitude of demand depends on
the equilibrium we study. As we compare different equilibria, we can no longer normalize D0 = 1for all
of them (and we choose instead to normalize σ0 = 1). The equivalent detrending is obtained here by
multiplying quantities and capacities in period tby the factor σt/σ0 = σt.

When the average spot price is prtand capacity exceeds Dt, the producers revenues are Rt = (prt −
c)Dtand consumer surplus is CSt = Dt(P − prt )/2. The corresponding detrended revenues and consumer
surplus are rt = (prt − c)[P − prt ]and cst = [P − prt ]

2/2. When Dt exceeds capacity, we will assume
that rationing favors the consumers with the highest willingness to pay. This assumption effectively
underestimates the welfare losses due to rationing. Let pkt = P −σt(K

t
1+Kt

2) be the marginal willingness
to pay when there is rationing and the quantity supplied is Kt

1+K
t
2. Then p

k
t > prt , Rt = (p

r
t−c)[Kt

1+K
t
2],

and CSt = [K
t
1 +Kt

2](p
k
t − prt ) + [K

t
1 +Kt

2](P − pkt )/2 = [K
t
1 +Kt

2](P + pkt − 2prt )/2.
In the equilibrium y∗, in the long run, each period capacity matches demand exactly with probability

θand capacity exceeds demand with probability 1 − θ. In the former case, the spot price is equal to
p̄, and in the latter case the expected spot price is (1 − g)p̄ + gc. Hence, in the long-run, the average
spot price is pr = θp̄ + (1 − θ)[(1 − g)p̄ + gc] = p̄ − (1 − θ)gmand the detrended average demand is
d = [P − p̄+ (1− θ)gm] = [P − (1− (1− θ)g)m− c]. Also, the detrended average investment is θgdper
period. Let ξ = 1− (1− θ)g. Thus, the long-run average detrended consumer surplus, industry revenues
and total surplus are:

cs∗ = 1
2
[P − c− ξm]2, r∗ = ξm[P − c− ξm]

s∗ = 1
2 [(P − c)2 − (ξm)2]− κθg[P − c− ξm].

In the equilibrium ŷ, the spot price is p̄in every period. Therefore p̂r = p̄and d̂ = P−p̄. In average, the
long-run detrended capacity is d̂(1− Ê) = d̂[1−θg/(1+g)] per period. Thus, p̂k = P − d̂[1−θg/(1+g)] =
p̄+ d̂θg/(1 + g). The detrended average investment is θgd̂/(1 + g). Let ξ̂ = 1 + (1− θ)g. Therefore, the
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long-run average detrended consumer surplus and industry revenues are:

bcs = ξ̂
2

h
P−p̄
1+g

i2
(ξ̂ + 2θg), r̂ = ξ̂m

h
P−p̄
1+g

i
ŝ = ξ̂

2

h
P−p̄
(1+g)2

i
[(P − p̄)(1 + g + θg) + 2m(1 + g)]− κθg

h
P−p̄
1+g

i
.

The producers prefer the equilibrium ŷto the equilibrium y∗when

(p̄− c)(1− θ)[1− (1− θ)g] <

∙
P − p̄

1 + g

¸
[1 + g − θ(2 + g)] + κθg

∙
1

1 + g

∙
P − p̄

p̄− c

¸
+ 1− θ

¸
.

This inequality is possible only when θis relatively small (for the inequality to hold, it is also necessary
that p̄is in the lower half of the interval [c, P ]). However, for all parameters, cs∗ > bcs and s∗ > ŝ. There
are two reasons for the latter. In the absence of rationing, total surplus with price p̂r = p̄(call this s̃) is
smaller than with price prbecause c < pr < p̂r. That is s̃ < s∗. In addition, ŝ < s̃because with rationing
there are further surplus losses.

As remarked above, among equilibria that always cover demand, total surplus is larger the smaller
is the average spot price. Roughly, the average spot price is decreasing in the average fraction of excess
capacity (AFEC). Clearly y∗minimizes the AFEC among all the strategies that ensure security of supply.
On the other hand, maintainig a higher AFEC is wasteful: the detrended average cost of a detrended
average capacity kis κθgk. It is possible that there are other MPE’s that maintain a higher AFEC and
a lower average spot price, and therefore produce more social surplus, even though they incur additional
investment costs. We do not know if such an MPE exists. It would also be desirable to design regulatory
mechanisms that induce such MPE’s. We do not pursue this question here, though we think it is extremely
important.

Alternatively, another way to increase total welfare is to reduce m(see the expression for s∗above).
This can be accomplished directly by reducing the cap price p̄. Usually, the cap price p̄is adjusted to
approximately match the marginal (or average) willingness to pay when there is rationing. Of course,
in this case, p̄depends on the severity and duration of the average rationing that is considered. Our
welfare analysis of the MPE y∗suggests that an alternative definition of p̄, one that has little to do with
the marginal willingness to pay, would be more appropriate. To maximize the total welfare s∗, we need
to minimize p̄subject to the constraints that the firms make nonnegative profits and that y∗remains an
equilibrium. The firms make nonnegative profits when r∗ − κθgd ≥ 0. This condition is equivalent to
p̄ ≥ c+ κθg/[1− (1− θ)g]. For y∗to be an equilibrium it must be that m/κ > ρφ(θ). That is

p̄ > c+ κ
(1− β)(2− β)

θ(2− β) + (1− θ)β
.

Therefore, to maximize welfare with the MPE y∗, we should set

p̄ = c+ κ ·max
½

θg

1− (1− θ)g
,

(1− β)(2− β)

θ(2− β) + (1− θ)β

¾
.

7 Conclusions
Markets for electric power are often regulated with the aim of achieving efficiency and security of supply.
Analyzing a simplified model, we show that recent market designs may provide poor incentives for the
latter. The model makes specific institutional assumptions about the spot market, along with other
simplifying assumptions. Nevertheless, the analysis captures the main driving forces and a conclusion
that is likely to be robust. The firms can extract (almost) monopoly rents by keeping excess capacity to
a minimum. A firm’s share of the rents is proportional to its own capacity,and hence each firm has an
incentive to increase its market share. However, investing too much in an attempt to grab market share
drastically reduces the spot price and the rents. Moreover, as demand grows continuously, market share
gains are only temporary since they quickly erode with future investments. Therefore, the incentive to
maintain monopoly prices is strong and total capacity rarely exceeds demand.In certain cases (Theorem
2),capacity is insufficient and there is rationing.These results attain in ‘non-collusive’Markovian equilibria.
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The problem is only likely to be exacerbated in collusive equilibria where the firms use intertemporal
incentives to punish market grabbers.

While investment is efficient in the sense that there are no wasteful investments, our analysis reveals
key deficiencies in the electricity markets we model. The spot market auction does not elicit the healthy
competition it was designed for. The ‘price inelasticity’ of demand leaves the consumers vulnerable to
serious exploitation by the firms.Of course,our model does not include capacity payments (i.e., compen-
sation for installed capacity), that are often provided by the regulatory agencies, in part as a mechanism
to mitigate this problem. It would be interesting to study how effective these additional incentives are,
and our model provides a realistic framework to do that.

8 Appendix

8.1 Proof of Theorem 1
We first derive that the expected discounted payoff for firm 1 when the initial capital stock is k ∈ L
and the firms follow the investment strategy y∗. To begin, assume that k ∈ L and that k1 + k2 = 1.
Let ∆ = k1 − k2. Then, k1 = (1 +∆)/2 and k2 = (1 −∆)/2. Therefore, in period 1, capacity stock is
1
2
(1 + g +∆, 1 + g − ∆), and demand is 1 + g with probability θ and 1 with probability 1 − θ. Recall
that when total capacity matches demand, firm 1’s revenue is proportional to its own capacity, and when
there is excess capacity, firm 1’s revenue is proportional to the complement of firm 2’s capacity. Let
G = θ(1 + g) + (1− θ)(1− g) = 1 + (2θ − 1)g. Then, firm 1’s net profit in period 0 is 1

2
[m(1 +∆)− κg]

and expected revenue in period 1 is

θ
m

2
[1 + g +∆] + (1− θ)

m

2
[1− g +∆] =

m

2
[∆+G].

In general, in period t, the expected demand is (1 + θg)t, with probability θ capacity matches demand
exactly, and with probability 1 − θ there is excess capacity. When capacity matches demand, each firm
invests Dtg/2, where Dt is current demand. Hence, firm 1’s expected discounted payoff is

v1(k| y∗) = 1
2
[m(1 +∆)− κg] +

P∞
t=1

βt

2

£
m[∆+ (1 + θg)tG]− θκ(1 + θg)tg

¤
= H + m∆

2(1−β)

where

H =
g

2
[m(1− 2θ)− κ(1− θ)] +

mG− κθg

2(1− γ)

is a constant independent of k.
For general k ∈ L that does not necessarily satisfy k1+k2 = 1, let ∆ = k1−k2 and O = 1− (k1+k2).

Define k̃i = ki+O/2 for i = 1, 2. Then k̃1+ k̃2 = 1 and k̃1− k̃2 = k1− k2 = ∆. Hence v1(k| y∗) coincides
with v1( k̃

¯̄̄
y∗) except for the payoffs in period 0:

v1(k| y∗) = v1( k̃
¯̄̄
y∗)−

h
mk̃1 −

κg

2

i
+ [r∗1(k)− κy∗1(k)].

Since g/2 = y∗1(k̃), we have that g/2 − y∗1(k) = [(k1 + k2)− (k̃1 + k̃2)]/2 = −O/2. Also, r∗1(k) = mk1 if
O > 0, and r∗1(k) = m(1 − k2) if O < 0. Since k̃1 = 1 − k̃2, r∗1(k) −mk̃1 = −m |O| /2. Replacing these
two expressions into the equation above we obtain

v1(k| y∗) = H +
1

2

∙
m∆

1− β
−m |O|− κO

¸
. (4)

We next compute the marginal value of initial capacity in various regions. Clearly, the value function
is only piece-wise differentiable and it has ‘kinks’.

Region L: From (4), for each k ∈ L,

∂v1
∂k1

(k| y∗) =
½

1
2
[m(2− β)/(1− β) + κ] k1 + k2 < 1

1
2
[mβ/(1− β) + κ] 1 < k1 + k2 < 1 + g

(5)
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Later we will also require the derivative of the function µ(x) = v1(k1 + x, k2 − x| y∗) at x = 0:

µ0(0) = lim
x→0

m[(k1 + x)− (k2 − x)]−m[k1 − k2]

2(1− β)x
=

m

1− β
. (6)

Region A: We subdivide A into ‘stripes’. Let k ∈ [0, 1)× [0, 1) and τ ∈ N be such that (1 + g)τ <
k1 + k2 < (1 + g)τ+1. Define k0 = k/(1 + g) and k00 = k. Then

v1(k| y∗) = m(1− k2) + β[θ(1 + g)v1(k
0 ¯̄ y∗) + (1− θ)v1(k

00 ¯̄ y∗)] (7)

or
v1(k| y∗) = B[m(1− k2) + βθ(1 + g)v1(k

0¯̄ y∗)].
Using (7) repeatedly, we obtain (recall that η = Bβθ)

v1(k| y∗) = C(k2) + [η(1 + g)]τv1( k̂
¯̄̄
y∗),

where k̂ = k/(1 + g)τ and C(k2) is a function of k2 only. Since 1 < k̂1 + k̂2 < 1 + g, (5) implies that

∂v1
∂k1

(k| y∗) = [η(1 + g)]τ
∂v1
∂k1

( k̂
¯̄̄
y∗)

1

(1 + g)τ
=

ητ

2

∙
βm

1− β
+ κ

¸
. (8)

Region U : If k ∈ U , the capital stock at the end of period 0 is (1 + g − k2, k2), independent of k1.
Therefore, the marginal value of initial capital is just equal to the marginal value of capital in period 0.
That is

∂v1
∂k1

(k| y∗) =
½

m+ κ k1 + k2 < 1
κ k1 + k2 > 1

(9)

RegionW : Pick k ∈W such that k1+k2 > 1. With k0 and k00 defined as k01 = k1/(1+g), k02 = 1−k01,
and k00 = (1 + g)k0, v1(k| y∗) satisfies equation (7). Therefore, from (6) we obtain

∂v1
∂k1

(k| y∗) = βθ(1 + g)

∙
m

1− β

¸
1

1 + g
+ β(1− θ)

∙
m

1− β

¸
=

βm

1− β
. (10)

Region Ir: The analysis for this region is lengthy and delicate because we simultaneously compute
the marginal value of capital and derive the functions τ∗ and τ̂ mentioned in the definition of y∗ (equation
(1)). For each pair of nonnegative integers r and τ , it will be convenient to define the regions

X(r, τ) = {k ∈ Ir | (1 + g)τ < k1 + k2 < (1 + g)τ+1}.

Assume that the integer τ is such that y∗(k) = (0, 0) for all k ∈ I0 such that k1+k2 > (1+g)τ . Then,
for any such k, we can compute firm 1’s expected value using the following recursive equation:

v1(k| y∗) =
½

mk1 + β[θ(1 + g)v1(k
0| y∗) + (1− θ)v1(k| y∗)] k1 ≤ 1

β[θ(1 + g)v1(k
0| y∗) + (1− θ)v1(k| y∗)] k1 > 1

where k0 = k/(1 + g) ∈ [0, 1)× [0, 1). Thus,

∂v1
∂k1

(k| y∗) =

⎧⎪⎨⎪⎩
Bm+ η

∂v1
∂k1

(k0
¯̄
y∗) k1 < 1

η
∂v1
∂k1

(k0
¯̄
y∗) k1 > 1

(11)

Having computed v1(k| y∗) under the assumption that y∗(k) = (0, 0) for all k ∈ I0 such that k1 + k2 >
(1 + g)τ (value iteration), we can now verify whether y∗(k) = (0, 0) is indeed optimal (policy iteration).
Let k ∈ X(0, τ). If firm 1 assesses its current choice of investment assuming that in the future both firms
will follow y∗, firm 1 faces the following optimization problem:

max
y1≥0

∙
−κy1 + β

h
θ(1 + g)v1( (

k1 + y1
1 + g

,
k2
1 + g

)

¯̄̄̄
y∗) + (1− θ)v1( (k1 + y1, k2)| y∗))

i¸
.
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Let α(k) denote the derivative of the objective function at y1 = 0 (or at any 0 ≤ y1 < (1+g)
τ+1−k1−k2).

Note that β[θ + η(1 − θ)] = η and that β(1 − θ)B = η(1 − θ)/θ. Assume k1 < 1. Then, using (11), we
obtain

α(k) = −κ+ β

∙
θ
∂v1
∂k1

(k0
¯̄
y∗) + (1− θ)

∂v1
∂k1

(k| y∗)
¸
= −κ+ η

∙
∂v1
∂k1

(k0
¯̄
y∗) +m

(1− θ)

θ

¸
,

where k0 = k/(1 + g). When k1 > 1 the expression for α(k) is the same but with the term m(1 − θ)/θ
removed. The actual value of α(k) depends on where in the square [0, 1) × [0, 1) does k0 land. When
τ = 0 or when τ = 1 and k2 > k1/g, for example, k0 ∈ U and we can use (9) to get an expression for
[∂v1/∂k1](k

0| y∗). If k2 ≤ k1/g, we can use (4) instead. Hence

α(k) =

⎧⎪⎪⎨⎪⎪⎩
−κ+ η[(m+ κ) +m(1− θ)/θ] τ = 0
−κ+ η[κ+m(1− θ)/θ] τ = 1 and gk2 > −k1
−κ+ ητ 1

2
[βm/(1− β) + κ] + ηm(1− θ)/θ τ ≥ 1, and gk2 ≤ k1 < 1

−κ+ ητ 1
2
[βm/(1− β) + κ] k1 > −1

(12)

Note that by lines 3 and 4, α(k) is a decreasing function of k1 for gk2 < k1 (because τ increases with
k1 and η < 1). Therefore, if α(k) ≤ 0 for k ∈ X(0, τ), then α(k) ≤ 0 for all k ∈ X(0, τ + 1).

Let k ∈ X(0, 0). Since m
κ
> 1−β

β
(by assumption), it follows (from line 1) that α(k) is a decreasing

function of θ. Therefore, for any θ ∈ [0, 1], α(k) is bounded below by the expression in the right hand
side evaluated at θ = 1. That is,

α(k) ≥ −κ+ β(m+ κ) = κβ

∙
m

κ
− 1− β

β

¸
> 0.

Therefore, by policy iteration, we conclude that y∗1(k) > 0 (and therefore y∗1(k) ≥ (1 + g)− k1 − k2) for
all k ∈ X(0, 0).

Recall that (r̄, τ∗, τ̂) determines the level of investment of firm 1 for any k ∈ I. If k ∈ Ir, firm 1 makes
full investments if r ≥ r̄ and partial investments if r < r̄. In Ir, r ≥ r̄, firm 1 makes a ‘full investment’ for
any k ∈ Ir with k1 < (1+g)τ

∗(r) and brings its capital stock up to (1+g)τ
∗(r) (that is, up to 1 if τ∗(r) = 0,

or up to 1 + g if τ∗(r) = 1). In Ir, r < r̄, firm 1 makes a ‘partial investment’ of (1 + g)τ̂(r) − k1 − k2 for
any k ∈ Ir with k1 + k2 < (1 + g)τ̂(r), so that after the investment, the total capital stock is (1 + g)τ̂(r).
A priori, we do not know r̄, therefore we define τ∗(r) and τ̂(r) for each r.

Since y∗1(k) > 0 for all k ∈ X(0, 0), either r̄ = 0 or r̄ ≥ 1 and τ̂(0) ≥ 1.
Let k ∈ I0 with k1 > 1. Note that η is increasing in θ. Since η ∈ [0, 1), by line 4 of (12),

α(k) ≤ −κ+ η

2

µ
βm

1− β
+ κ

¶
=

κ(2− η)

2

∙
m

κ

∙
ηβ

(2− η)(1− β)

¸
− 1

¸
< 0

because by assumption
m

κ
<
1− β

ηβ
<
(2− η)

η

(1− β)

β
.

Therefore, define τ∗(0) = 0. Let τ̄ be the index of the last diagonal {k | k1 + k2 = (1 + g)τ} that
passes below the point k = (1, (1 + g)). That is, (1 + g)τ̄ ≤ 2 + g < (1 + g)τ̄+1. Pick k ∈ I0 such that
k1 + k2 > (1 + g)τ̄ and k1 < 1. If α(k) ≥ 0, then let r̄ = 0. Otherwise, r̄ ≥ 1 and

τ̂(0) = max {τ + 1 | α(k) ≥ 0 ∀k ∈ X(0, τ) with k1 < 1}.

This finishes the analysis of I0.
We now proceed recursively to study Ir+1, r ≥ 0. Suppose that we have already determined τ∗(j) and

τ̂(j) for j = 0, . . . , r. Let τ be such that y∗1(k
0) > 0 for all k0 ∈ X(r, τ − 1) (and hence for all k0 ∈ X(r, j),

j = 0, . . . , τ − 1). Assume temporarily that y∗(k) = (0, 0) for all k ∈ Ir+1 with k1 + k2 > (1 + g)τ . As
before, under this assumption, for any such k, equation (11) is still valid. Again, let α(k) be the derivative
of the corresponding investment optimization problem at the end of the period when firm 1 assumes that
y∗ will be followed in the future. Let k ∈ X(r + 1, τ). Then

α(k) =

⎧⎪⎨⎪⎩
−κ+ η

∙
∂v1
∂k1

(k0
¯̄
y∗) +m

(1− θ)

θ

¸
k1 < 1

−κ+ η
∂v1
∂k1

(k0
¯̄
y∗) k1 > 1
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where k0 = k/(1 + g) ∈ X(r, τ − 1). By assumption y∗1(k
0) > 0. Note that by the definition of y∗, this

implies that k01 + y∗1(k
0) is constant in a neighborhood of k0 (that is, y∗1(k

0
1 + �, k02) = y∗1(k

0)− �). Then,
∂v1
∂k1
(k0| y∗) = m+ κ for all such k0 because a small increment � > 0 in k01 increases the current profit by

m� and decreases the investment at the end of the period by �. Therefore

α(k) =

½
−κ+ η[(m+ κ) +m(1− θ)/θ] k1 < 1
−κ+ η(m+ κ) k1 > 1

(13)

Since m/κ > (1 − β)/β, α(k) > 0 if k1 < 1. Equation (13) assumes that y∗1(k
0) > 0, which allows us

to compute ∂v1
∂k1
(k0| y∗) explicitly. But even if y∗1(k0) = 0, we can compute ∂v1

∂k1
(k0| y∗) (and hence α(k))

recursively using the fact that in this case r̄ > r and we already know τ̂(j) for j = 0, . . . , r.
We first check that if r̄ ≤ r, so that firm 1 makes ‘full investments’ in Ir, then firm 1 also makes full

investments in Ir+1. Let τ̄ be such that (1+ g)τ̄ ≤ 1+(1+ g)r+1 < (1+ g)τ̄+1. Assume that r̄ ≤ r. Then
y∗(k0) > 0 for all k0 ∈ Ir with k01 < 1 (in particular, for all k0 ∈ X(r, τ̄ − 1) ∪X(r, τ̄) with k01 < 1). Let
k1 ∈ X(r, τ̄) with k11 < 1, k2 ∈ X(r, τ̄) with 1 < k21 < 1 + g and k3 ∈ X(r, τ̄ + 1) with k31 < 1 + g. Since
y∗1(k

1/(1 + g)) > 0, α(k1) ≥ 0 by previous argument. By (12), it is easy to check that α(k2) and α(k3)
have the same sign. Therefore, if α(k2) < 0, it is optimal for firm 1 to invest so that its final capacity
is 1, and if α(k2) > 0 and α(k3) > 0, it is optimal for firm 1 to invest so that its final capacity is 1 + g.
Hence, let τ∗(r) = 0 if α(k2) < 0 and let τ∗(r) = 1 otherwise.

Now assume that r̄ > r, so firm 1 makes partial investments in Ir. In particular, y∗(k) > 0 for all
k ∈ X(r, τ̂(r)− 1) with k1 < (1+ g)τ

∗(r). Therefore α(k) > 0 for all k ∈ X(r+1, τ̂(r)) with k1 < 1. This
implies that if firm 1 makes partial investments in Ir+1 as well, then τ̂(r + 1) ≥ τ̂(r) + 1.

If α(k) ≥ 0 for all k ∈ Ir+1 with k1 < 1 and α(k) < 0 for all k ∈ Ir+1 with k1 > 1, let r̄ = r + 1 and
τ∗(r + 1) = 0. If α(k) ≥ 0 for all k ∈ Ir+1 with k1 < 1 + g, let r̄ = r + 1 and τ∗(r + 1) = 1. If none of
these two cases apply, then r̄ > r + 1, and we define

τ̂(r + 1) = max {τ | α(k) ≥ 0 for some k ∈ X(r, τ − 1)},

and τ∗(r+1) = 0 if 1+ (1+ g)r+2 > (1+ g)τ̂(r+1) and τ∗(r+1) = 1 otherwise. This finishes our analysis
of the region I.

We now check that, for all k /∈ I, y∗1(k) solves the optimization problem

max
y1≥0

h
−κy1 + β

h
θ(1 + g)v1(k

+
¯̄
y∗) + (1− θ)v1(k

0
¯̄
y∗)
ii

,

where k0 = (k1 + y1, k2 + y∗2(k)) and k+ = k0/(1 + g)

Region L ∪ U: Let k ∈ L ∪ U and y1 < y∗1(k). Then the derivative of the objective function of the
optimization problem above is

α = −κ+ βθ(1 + g)
∂v1
∂y1

(k+
¯̄
y∗) + β(1− θ)

∂v1
∂y1

(k0
¯̄
y∗).

Using (5) we obtain the lower bound

α ≥ −κ+ βθ
2

h
(2−β)m
1−β + κ

i
+ β(1−θ)

2

h
βm
1−β + κ

i
= [θ(2−β)+(1−θ)β]βκ

2(1−β)

h
m
κ − φ(θ) 1−ββ

i
.

Since by assumption m
κ ≥ φ(θ) 1−ββ , we conclude α ≥ 0. Assume now that y1 > y∗1(k). Here again, from

(5) and (8) we obtain an upper bound on the derivative of the objective function:

α ≤ −κ+ βθ

2

∙
βm

1− β
+ κ

¸
+ β(1− θ)

η

2

∙
βm

1− β
+ κ

¸
=

βηκ

2(1− β)

∙
m

κ
− 2− η

η

1− β

β

¸
.

By assumption m
κ
≤ ψ(θ) 1−β

β
, and since ψ(θ) 1−β

β
< 2−η

η
1−β
β
, we conclude α < 0. Therefore the objective

function is (weakly) increasing for y1 ∈ [0, y∗1(k)) and (strictly) decreasing for y1 > y∗1(k). Hence,
y1 = y∗1(k) is optimal.
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Region Z = R2\[L∪U∪I]: Let k ∈ Z and y1 ≥ 0. For either k ∈W or k ∈ A it holds that k01+k
0
2 ≥ 1

and k+1 +k+2 ≥ 1 (to see why this is the case when k ∈W , it suffices to recall that y∗2(k) = 1+g−k1−k2).
From (5) and (8), the derivative of the objective function has an upper bound:

α ≤ −κ+ βθ
1

2

∙
βm

1− β
+ κ

¸
+ β(1− θ)

η

2

∙
βm

1− β
+ κ

¸
< 0.

Now assume k is such that k1 ≥ 1. Since τ̂(r) ≥ 1, the investment made by player 2 is such that
k01 + k02 ≥ 1 and k+1 + k+2 ≥ 1. In this case, the best possible situation for firm 1 is when k1 < 1 + g. In
this case, an upper bound for the derivative of the objective function is obtained using (10):

α ≤ −κ+ βθ
βm

1− β
+ β(1− θ)η

βm

1− β
= −κ+ η

βm

1− β
=

βηκ

1− β

∙
m

κ
− ψ(θ)

1− β

β

¸
≤ 0,

since by assumption m
κ
< ψ(θ) 1−β

β
. In all cases the objective function is weakly decreasing in y1, and the

optimal investment is y1 = 0 = y∗1(k).

8.2 Proof of Theorem 2
The proof follows the same arguments of the proof of Theorem 1. Let k be such that k1 + k2 = 1. With
∆ = k1−k2 we can rewrite k1 = (1+∆)/2 and k2 = (1−∆)/2. In period 0, firm 1’s payoff is m(1+∆)/2.
In period 1, firm 1’s expected payoff is

θ
hm
2
(1 +∆)− κ

g

2

i
+ (1− θ)

m

2
(1 +∆) =

m

2
(1 +∆)− κ

θg

2
.

In general, in period t ≥ 2, firm 1’s expected payoff is:

m

2
[(1 + θg)t−1 +∆]− κ

θg

2
(1 + θg)t−1.

The expected discounted payoff is:

v1(k| ŷ) = m
2
(1 +∆) +

P∞
t=1

βt

2
[m[(1 + θg)t−1 +∆]− κ[(1 + θg)t−1θg]]

= m∆
2(1−β) +

m(1−θgβ)−κθgβ
2(1−γ)

If k1 + k2 < 1, let O = 1− (k1 + k2) and k̃i = ki +O/2, i = 1, 2. Here,

v1(k| ŷ) = v1( k̃
¯̄̄
ŷ)−mk̃1 +mk1 − κŷ1(k)

= v1( k̃
¯̄̄
ŷ)−m(k1 +

O
2
) +mk1 − κ

2
(1− k1 − k2) = v1( k̃

¯̄̄
ŷ)− (m+ κ)O

2
.

The marginal value is therefore:

∂v1
∂k1

(k| ŷ) = m

2(1− β)
+

m+ κ

2
=
1

2

∙
m(2− β)

1− β
+ κ

¸
.

Let us now consider the case when k is such that k1 + k2 > 1 and ki < 1. Suppose further that
(1 + g)τ < k1 + k2 < (1 + g)τ+1, τ = 0, 1, 2.... Let kτ = (1 + g)−τk. Using a similar argument as in the
proof of Theorem 1 we obtain:

v1(k| ŷ) = C(k2) + [η(1 + g)]τ+1v1(k
τ | ŷ).

So the derivative is:
∂v1
∂k1

(k| ŷ) = ητ+1

2

∙
m(2− β)

1− β
+ κ

¸
.

We now check that ŷ solves the following optimization problem:

max
y1≥0

£
− κy1 + β[θ(1 + g)v1(k

+
¯̄
ŷ) + (1− θ)v1(k

0
¯̄
ŷ)]
¤

where k0 = (k1 + y1, k2 + ŷ2), k+ = k0/(1 + g). The derivative of the objective function is:

α = −κ+ βθ(1 + g)
∂v1
∂y1

(k+
¯̄
ŷ)

1

1 + g
+ β(1− θ)

∂v1
∂y1

(k0
¯̄
ŷ).
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First Region: Assume that k ≥ 0 and k1 + k2 ≤ 1. If y1 < ŷ1(k) then k01 + k02 < 1 and:

α = −κ+ βθ
1

2

∙
m(2− β)

1− β
+ κ

¸
+ β(1− θ)

1

2

∙
m(2− β)

1− β
+ κ

¸
= −κ+ 1

2
β

∙
m(2− β)

1− β
+ κ

¸
.

Thus, α ≥ 0 since by hypothesis m/κ ≥ (1− β)/β = ρ, and firm 1 would like to increase y1. Conversely,
if y1 > ŷ1(k) then 1 < k01 + k02 and we obtain the following upper bound on the derivative:

α = −κ+ βθ(1 + g)∂v1
∂y1
(k+

¯̄
ŷ) + β(1− θ)∂v1

∂y1
(k0

¯̄
ŷ)

≤ −κ+ βθ 1
2

h
m(2−β)
1−β + κ

i
+ β(1− θ) 1

2
η
h
m(2−β)
1−β + κ

i
= −κ+ η

2

h
m(2−β)
1−β + κ

i (14)

Since by hypothesis m/κ < (2−η)(1−β)/[η(2−β)], α < 0 and firm 1 would like to decrease y1. Therefore
y1 = ŷ1(k) is optimal.

Second Region: Assume that k1 + k2 > 1 and ki < 1, i = 1, 2. In this case, if y1 > ŷ1(k) = 0 then
k01 + k02 > 1 and the same upper bound (14) above attains. Therefore α < 0 and firm 1 would like to
decrease y1.

Region I = ∪r≥0Ir: Here, the construction of r̄ and the maps τ∗ : N→ {0, 1} and τ̂ : {0, 1, . . . , r̄ −
1}→ N follows the same recursive steps leading to equation (12) in the proof of Theorem 1, but with a
different boundary condition on the derivative α(k) for k ∈ X(0, τ) given by:

α(k) =

⎧⎪⎪⎨⎪⎪⎩
−κ+ ητ

2

∙
m(2− β)

1− β
+ κ

¸
+ ηm

(1− θ)

θ
k1 < 1

−κ+ ητ

2

∙
m(2− β)

1− β
+ κ

¸
k1 > 1

The corresponding expression for α(k) in Theorem 1 given by (12) is more complex because of the two
regions U and W required in the definition of y∗.

Third Region Assume that k1 ≥ 1 > k2. Since τ̂(r) ≥ 1, the investment made by player 2 is such
that k01 + k02 ≥ 1 and k+1 + k+2 ≥ 1. In this case, the best possible situation for firm 1 is when k1 < 1+ g.
In this case, an upper bound for the derivative of the objective function is given again by (14). Therefore
α < 0, the objective function is decreasing in y1, and the optimal investment is ŷ1 = 0.

8.3 Proof of Theorem 3
For any k ∈ L this strategy generates the same stock trajectory as the strategy of Theorem 1. Therefore
v1(k| y∗) satisfies equation (4) (with θ = 1). In particular, if k1 + k2 = 1, then

v1(k| y∗) =
1

2

∙
m− κg

1− γ
+

m(k1 − k2)

1− β

¸
and v1(k| y∗) + v2(k| y∗) =

m− κg

1− γ
,

so v1(k| y∗) + v2(k| y∗) is independent of k (as long as k1 + k2 = 1).
Let k0 ∈M . Then, for any t ≥ 0,

kti =
k0i

(1 + g)t
+

g

2

t−1X
τ=0

1

(1 + g)τ
=

k0i
(1 + g)t

+
1 + g

2
− 1

2(1 + g)t−1
.

When k0i = 1, k
t
i =

1
2 [

1−g
(1+g)t

+ 1 + g] for all t ≥ 0. Hence,

v1( (1, 1)| y∗) =
X
t≥0

γt
∙
m(1− kt2)−

κg(1 + g)

2

¸
=
1

2

∙
m(1− g)− κg(1 + g)

1− γ
− m(1− g)

1− β

¸
.

Moreover,

v1( (1− z, 1− z)| y∗) = v1( (1, 1)| y∗) +
mz

1− β
for all 0 ≤ z <

1

2
(1− g). (15)
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Clearly, v1( (1− z, 1− z)| y∗) is increasing in z, and for any z < βg2/[2(1− γ)] ≡ �1 and any k such that
k1 + k2 = 1,

v1( (1− z, 1− z)| y∗) < v1( (0, 1)| y∗) ≤ v1(k| y∗). (16)

We need to check the incentive constraints to follow y∗. We do this by regions.

First Region: Assume that k0 ∈ L. In this case v1(k0
¯̄
y∗) satisfies equation (4). In Theorem 1 we

checked that under-investments are not profitable when k0 ∈ L. For similar reasons, under-investments
are not profitable here. For over-investments we cannot use the results of Theorem 1 because when
k1+k2 > 1, the continuation values v1(k| y∗) are now different. Let {kt} be the capacity stock trajectory
when the firms follow y∗. By definition, k11 + k12 = 1 and k1i ≥ 1 − �̄, i = 1, 2. Suppose that firm 1
overinvests by x(1 + g) so that (k11 + x, k12) ∈ A◦(0). We need to check that

γv1(k
1
¯̄
y∗) ≥ −κx(1 + g) + γv1( (k

1
1 + x, k12)

¯̄
y∗).

At (k11+x, k12), firm 1 makes a revenue of m(1−k12) and needs to make an investment to bring its capacity
stock up to 1 − �(k11 + x, k12) ≥ 1 − �̄ in period 2. Recall that v1( (1− z, 1− z)| y∗) is increasing in z.
Therefore

−κx(1 + g) + v1( (k
1
1 + x, k12)

¯̄
y∗)

≤
−κx(1 + g) + γ[m(1− k12)− κ((1− �̄)(1 + g)− (k11 + x))] + γ2v1( (1− �̄), (1− �̄)| y∗)

<
γ[m(1− k12)− κ((1− �̄)(1 + g)− k11] + γ2v1( (1− �̄), (1− �̄)| y∗)

<
γ[m(1− k12)− kg/2] + γ2v1(k

2
¯̄
y∗) = γv1(k

1
¯̄
y∗)

where the last inequality follows because k21 ≥ �̄ and (16) imply that v1( (1− �̄, 1− �̄)| y∗) ≤ v1(k
2
¯̄
y∗),

and k11 = 1 − k12 ≤ 1 − �̄ implies that (1 − �̄)(1 + g) − k11 ≥ (1 − �̄)g > g/2. Thus an overinvestment of
x(1 + g) with 0 < x < 1 + g − k11 is not profitable.

An overinvestment with x ≥ 1 + g − k11 does even worse. In this case, k
1
1 + x ≥ 1 + g and k12 < 1.

Therefore, in period 1 the firms make no investments. Consider the overinvestment x̂(1+g) instead, where
k11 + x̂ = (1 + g)(1− �̄). By definition, x̂ < x, and one can also check that v1(1− �̄, k12) > v1(k

1
1 + x, k12).

Therefore, by the preceding argument,

−κx(1 + g) + γv1( (k
1
1 + x, k12)

¯̄
y∗) < −κx̂(1 + g) + γv1(k

1
1 + x̂, k12

¯̄
y∗) < γv1(k

1
¯̄
y∗).

Second Region: Assume k0 ∈ A◦(0) and k01 6= k02 . At the end of period 0, firm 1 is required to make
an investment of y∗1(k

0) = (1− �(k0))(1 + g)− k01 , so its total continuation value is

C = −κy∗1(k0) + γv1( (1− �(k0), 1− �(k0))
¯̄
y∗).

Suppose that firm 1 overinvests x(1 + g) where −y∗1(k0)/(1 + g) < x < �(k0) and x 6= 0, so that the
capacity stock next period is (1− �(k0) + x, 1− �(k0)) ∈ A◦(0). Then, its total continuation value is

−κ[y∗1(k0) + x(1 + g)] + γv1( (1− �(k0) + x, 1− �(k0))
¯̄
y∗).

Overinvestments are clearly not profitable because they require an additional cost and lead to a lower
continuation value from next period onward. The most attractive deviation is not to invest at all (that
is, make x = −y∗1(k0)/(1 + g)). Not investing leads to the capital stock k̂1 = (k01/(1 + g), 1− �(k0)) and

the total continuation value γv1( k̂1
¯̄̄
y∗). By construction, k̂1 ∈ A(�̄) ∪ U(�̄) ∪W (�̄). Therefore

γv1( k̂
1
¯̄̄
y∗) = γ[m�(k0)− κ((1− �(k̂1))(1 + g)− k̂11)] + γ2v1( (1− �(k̂1), 1− �(k̂1))

¯̄̄
y∗)

≤
γ[m�̄− κ((1− �̄)(1 + g)− k̂11)] + γ2v1( (1− �̄, 1− �̄)| y∗).

On the other hand,

C ≥ −κ(1 + g − k01) + γv1( (1− �(k0), 1− �(k0))
¯̄
y∗)

≥ −κ(1 + g − k01) + γv1( (1, 1)| y∗).
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To ensure that the firm does not want to deviate, we need to check that C−v1( k̂1
¯̄̄
y∗) ≥ 0. The difference

C − v1( k̂
1
¯̄̄
y∗) is bounded below by

κ[γ((1− �̄)(1 + g)− k̂11)− (1 + g − k01)] + γ(1− γ)v1( (1, 1)| y∗)− γm�̄
h
1 + γ

1−β

i
≥

γ(1− γ)v1( (1, 1)| y∗)− (1− γ)κ(1 + g)− γ�̄
h
m
h
1−βg
1−β

i
+ κ(1 + g)

i
where equality is attained when k01 = 0 = k̂11 . Let

ϕ = γv1( (1, 1)| y∗)− κ(1 + g) =
γm(1− g)

2

∙
βg

(1− β)(1− γ)

¸
− κ(1 + g)

∙
1 +

γg

2(1− γ)

¸
.

Therefore ϕ > 0 if and only if

m

κ
>
(1 + g)(1− β)

γβg(1− g)
[2(1− β)− βg(1− g)] = ρ

∙
2

ρ

g(1− g)
− 1

¸
,

and the difference C − v1( k̂
1
¯̄̄
y∗) is nonnegative provided that

0 < �̄ ≤ ϕ(1− γ)

γ
h
m
h
1−βg
1−β

i
+ κ(1 + g)

i ≡ �2.

Third Region: Assume that k0 = (1−z, 1− z) ∈M . If the firms follow y∗, then k11 = k12 =
1−z
1+g

+ g
2
.

Any deviation leads to a k̂1 ∈ A◦(0) with k̂11 6= k̂12 . One can check that the most attractive deviation is
not to invest at all. Suppose firm 1 does not invest. Then k̂11 = (1− z)/(1 + g) and in the second period
firm 1 is required to invest (1− �̄)(1 + g)− k̂11 . Hence, we need to check that

−γκ
∙
(1− �̄)(1 + g)− 1− z

1 + g

¸
+ γ2v1( (1− �̄, 1− �̄)| y∗) ≤ −κ(1 + g)

g

2
+ γv1(k

1
¯̄
y∗).

Since

γv1(k
1
¯̄
y∗)− γ2v1( (1− �̄, 1− �̄)| y∗) ≥ γm

1− β

∙
z + g

1 + g
+

g

2
− γ�̄

¸
and z > 0, the incentive constraint is satisfied if

γm

1− β

∙
g

1 + g
+

g

2
− γ�̄

¸
≥ κ(1 + g)

g

2
− γκ

∙
(1− �̄)(1 + g)− 1

1 + g

¸
or

γ�̄

∙
γm

1− β
+ κ(1 + g)

¸
≤ γm

1− β

∙
g

1 + g
+

g

2

¸
− κ[(1 + g)

g

2
− β((1 + g)2 − 1)].

Since β > 1
2
, (1 + g)g/2− β((1 + g)2 − 1) < 0. Hence, the incentive constraint is satisfied provided that

�̄ ≤
∙

g

1 + g
+

g

2

¸. h
(1 + g)(β +

κ

m
(1− β)

i
≡ �3.

Fourth Region: Assume that k0i > 1+g, i = 1, 2. Firms are not supposed to invest. Any investment
x > 0 undertaken by firm 1 such that (1 + g)τ+1 > k01 + x > (1 + g)τ for some integer τ ≥ 1, has a net
cost saving of:

[−1 + βτ ]κx < 0.

Therefore the optimal investment is y∗1(k
0) = 0.

Fifth Region: Finally, assume that k01 < 1 + g ≤ k02 . Firm 1 is to invest y∗1(k
0) = 1 + g − k01 and

firm 2 is to invest 0. For y1 < y∗1(k
0), firm 1’s marginal value of investment α is:

α = −κ+ β(m+ κ) > 0.
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Similarly, for y1 > y∗1(k
0), the marginal value of investment is

α ≤ −κ+ βκ < 0.

because an additional investment now produces no additional profits next period but decreases the re-
quired investment next period. Therefore the optimal investment is y1 = y∗1(k

0).

In summary, if we choose �̄ ≤ min {�1, �2, �3}, all incentive constraints are satisfied and y∗ is an
equilibrium.
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