Multi-Objective Simplex Method Algorithm

Purpose

Maximize
multiple linear objectives
subject to
multiple linear constraints
Definitions
Variables: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ Basic variable \#2: $\mathrm{x}_{\mathrm{B} 2}$ Non-basic variable \#4: $\mathrm{x}_{\text {NB4 }}$
Objectives: $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \ldots, \mathrm{Z}_{\mathrm{k}}$
Constraints: $\mathrm{a}_{1}, \mathrm{a}_{2^{\prime}}, \ldots, \mathrm{a}_{\mathrm{m}}$
Reduced cost gradients: $\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{m}}$

One Dimensional (1D) Example

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{NB}}^{\mathrm{T}}=\left[\mathrm{x}_{1}\right] \\
& \mathrm{C}_{\mathrm{NB}}^{\mathrm{T}}=[3] \\
& \frac{\mathrm{da}_{1}}{\mathrm{dx}_{\mathrm{NB} 1}}=\frac{\mathrm{da}}{\mathrm{dx}}=1 \\
& -\mathrm{f}^{\mathrm{f}^{\mathrm{T}}} \mathrm{x}_{\mathrm{NB}} \\
& -\mathrm{f}_{\mathrm{x}_{\mathrm{NB}}}^{1}=\mathrm{z}_{\mathrm{NB}}-\mathrm{C}_{\mathrm{B}} \cdot \frac{\mathrm{da}_{1}}{\mathrm{dx}_{\mathrm{NB} 1}} \\
& =3-0 \cdot 1=3
\end{aligned}
$$

One Dimensional (1D) Example

[^0]
Zeleny Multi-Objective Simplex Method

Move from one constrained point to another while trying to maximize all objectives. (Detailed steps in Cohon and Lecture Notes)

Step 4

Is the current solution obviously noninferior?
Step 5
Is the current solution obviously inferior?
Step 6
Is the current solution noninferior by a less obvious manner?
Step 8
Is one search direction obviously better than all others? Even if it leads to a decrease in any of the objectives?

Step 9a
Do any of the search directions lead to a change in the objectives? Even decreases in the objectives are allowed.
If so, it may lead to unexplored bases (to be checked in Step 12)
Step 11
Find an unexplored bases (with a new nonbasic variable) in storage
Step 12
Would the introduction of a nonbasic variable lead to an unexplored basis?
Step 13
Introduce a nonbasic variable and remove a basic variable to form a new basis

Step 4a

Is the current solution obviously noninferior?
(Are the reduced gradients all non-negative for a particular objective?)

Not noninferior

Noninferior

Step 4b and 4c

Is the current solution uniquely noninferior?
(Do any of the non-basic variables have reduced cost equal to zero?)

Uniquely Noninferior

Not Uniquely Noninferior

Step 4C
Find the other points that this leads to

Step 5

Is the current solution obviously inferior?
(Will the introduction of a nonbasic variable lead to an increase in all objectives?)

Variable $\mathrm{x}_{\mathrm{NB} 1}$

Not clearly inferior

Variable $\mathrm{x}_{\mathrm{NB} 2}$

Current solution is clearly inferior
$\mathrm{x}_{\text {NB2 }}$ will now become basic
Which currently basic variable will it replace? Answer comes in Step 12

Is the current solution noninferior by a less obvious manner?
Solve the non-dominance problem

Step 8

Is one search direction obviously better than all others? Even if it leads to a decrease in any of the objectives?
(Are the scaled gradients with respect to one nonbasic variable greater than the scaled gradients of any other nonbasic variable?)

$\mathrm{x}_{\mathrm{NB} 1}$ is non-dominated

$\mathrm{x}_{\mathrm{NB} 1}$ is non-dominated

Neither variable/direction
is non-dominated

Step 9a

Any reduced costs for any objective not zero?
If so, it may lead to unexplored bases (to be checked in Step 12)

Step 12

Would the introduction of a nonbasic variable lead to an unexplored basis?
Form the basis, and then check whether it is new.
Introduce the nonbasic variable x_{4} and check each basic variables to determine whether the constraints impose a maximum increment for the incoming nonbasic variable

All of the thetas represent the maximum allowable step size before a currently basic variable becomes zero. Therefore, choose the smallest maximum step size.

Step 13

Introduce a nonbasic variable and remove a basic variable to form a new basis

Introduce the nonbasic variable x_{3} and remove the basic variable x_{1}

[^0]: Multi-Objective Simplex Method Algorithm

