MAPL 699
 Optimization and Equilibrium Problems, Spring 2001, Professor Gabriel

Theorem

Let $f: R^{n} \rightarrow R$ be a convex program and let $S \subseteq R^{n}$ be a convex set. Then, the convex program

$$
\begin{align*}
& \min f(x) \\
& \text { s.t } \tag{1}\\
& x \in S
\end{align*}
$$

has either 0,1 , or an infinite number of solutions.

Proof

Consider the convex program
(2) $\quad \min c_{1} x$ s.t. $x \geq b_{1}, x \leq b_{2}$.

Zero solutions

Let $c_{1}=1, b_{1}=0, b_{2}=-1$, then (2) has no solutions since the feasible region is empty. (The same conclusion could be reached if we took $c_{1}=-1, b_{1}=0$ and we removed the second inequality since the objective function would be unbounded.)

One solution

Let $c_{1}=1, b_{1}=0, b_{2}=1$, then (1) has exactly one solution, namely $\mathrm{x}=0$.

Infinite number of solutions

Let x and y be two distinct solutions to (1) and let $\mathrm{z}=\mathrm{w} \mathrm{x}+(1-\mathrm{w}) \mathrm{y}$ where w is a scalar in $(0,1)$. Then by definition of S being a convex set, z is in S . By the convexity of f we have $f(z)=f(w x+(1-w) y) \leq w f(x)+(1-w) f(y)$, which implies that z is also optimal given that x and y were. Hence, there are an infinite number of solutions.

QED

