MAPL 699 Optimization and Equilibrium Problems, Spring 2001, Professor Gabriel

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex program and let $S \subseteq \mathbb{R}^n$ be a convex set. Then, the convex program

(1) $\min_{\substack{s.t \\ x \in S}} f(x)$

has either 0, 1, or an infinite number of solutions.

Proof

Consider the convex program

(2) min $c_1 x \ s.t. \ x \ge b_1, x \le b_2$.

Zero solutions

Let $c_1 = 1, b_1 = 0, b_2 = -1$, then (2) has no solutions since the feasible region is empty. (The same conclusion could be reached if we took $c_1 = -1, b_1 = 0$ and we removed the second inequality since the objective function would be unbounded.)

One solution

Let $c_1 = 1, b_1 = 0, b_2 = 1$, then (1) has exactly one solution, namely x=0.

Infinite number of solutions

Let x and y be two distinct solutions to (1) and let z=w x + (1-w) y where w is a scalar in (0,1). Then by definition of S being a convex set, z is in S. By the convexity of f we have $f(z) = f(wx + (1-w)y) \le wf(x) + (1-w)f(y)$, which implies that z is also optimal given that x and y were. Hence, there are an infinite number of solutions.

QED